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Using Meta-Plasticity to Discover 
the Biophysics of Learning



Learning in Artificial and Biological Neural 
Networks

x y E

Learning:  
    Update the weight in a way that decreases an error function. 

Credit Assignment Problem:  
    How does a single weight contribute to the error?

Δw = ?
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Learning in Artificial and Biological Neural 
Networks

x y E

Local Plasticity  
    Changes to  are largely a function of pre- and post-synaptic activity. 

Biological Credit Assignment Problem: 
    How to achieve effective learning under biologically relevant constraints? 

w

Δw ≈ F(vpre, vpost)local plasticity:
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bursts and spikes?
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(Lillicrap et al., 2016)

ΔWℓ( j, k) = − ηeℓ( j)yℓ−1(k)
Bℓ = fixed random

Random feedback alignment
ΔWℓ( j, k) = − ηeℓ( j)yℓ−1(k)

Bℓ = WT
ℓ+1

“weight alignment”

Backprop
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(Lillicrap et al., 2016)

ΔWℓ( j, k) = − ηeℓ( j)yℓ−1(k)
Bℓ = fixed random

Random feedback alignment

Learning in Artificial and Biological Neural 
Networks

x y E

W2 W3 W4

B1 B2 B3

y1 y2 y3

e1 e2 e3

Feedback alignment learns 
slowly and poorly in deep 

networks, especially with online 
learning (batch size =1)

backprop
fdbk. alignment



Meta-Plasticity to discover effective 
plasticity rules
• Meta-Learning: Optimize the learning rule across multiple tasks: “learning to learn.”


• Meta-Plasticity: Meta-learn a plasticity rule.


• Examples:


• Meta-learn , initial , and plasticity rule at each synapse (Lindsey and Litwin-
Kumar, 2020)


• Meta-learn parameters for plasticity rule at each synapse. Retain the same  
across tasks (Miconi et al., 2019)


• Results: Better than backprop at generalizing to new tasks.  

• Problem: Resulting learning rules are not interpretable, difficult to draw biological 
conclusions.

Bℓ Wℓ

Wℓx y E

Δw = F( … ; θ)



Meta-Plasticity to discover effective 
plasticity rules
• Meta-Learning: Optimize the learning rule across multiple tasks: “learning to learn.”


• Meta-Plasticity: Meta-learn a plasticity rule.


• Examples:


• Meta-learn , initial , and parameters for plasticity rule at each synapse 
(Lindsey and Litwin-Kumar, 2020)


• Meta-learn parameters for plasticity rule at each synapse. Retain the same  
across tasks (Miconi et al., 2019)


• Results: Better than backprop when generalizing to new tasks.  

• Problem: Resulting learning rules are not interpretable, difficult to draw biological 
conclusions.
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Our approach to meta-plasticity
• Meta-parameter sharing 

• All synapses share the same local plasticity rule. 


• Produces a single, interpretable plasticity rule.

x y E

W2 W3 W4

B1 B2 B3

y1 y2 y3

e1 e2 e3

ΔWℓ( j, k) = F(ypre(k), ypost( j), epre(k), epost( j); θ)
Bℓ fixed, random
Meta-learn θ

(See also: Confavreux et al., NeurIPS, 2020)



Our approach to meta-plasticity

• for each task: 


• Initialize ’s and ’s

• for each data point:


• Forward and backward pass to compute ’s and ’s 


• Update  using 


Compute outputs  on unseen “query” data


Update theta using gradient of meta-cost: 

W B

y e
W′ s ΔWℓ = F( … ; θ)

̂Y
Jmeta = L( ̂Y, Y) + λ∥θ∥1

outer loop over tasks (“episodes”)

ΔWℓ( j, k) = F(ypre(k), ypost( j), epre(k), epost( j); θ)
Bℓ fixed, random
Meta-learn θ
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Our approach to meta-plasticity

• for each task: 


• Initialize ’s and ’s

• for each data point:


• Forward and backward pass to compute ’s and ’s 


• Update  using 


Compute outputs  on unseen “query” data


Update theta using gradient of meta-cost: 

W B

y e
W′ s ΔWℓ = F( … ; θ)

̂Y
Jmeta = L( ̂Y, Y) + λ∥θ∥1

L1 meta-regularization 
promotes simple plasticity rules

ΔWℓ( j, k) = F(ypre(k), ypost( j), epre(k), epost( j); θ)
Bℓ fixed, random
Meta-learn θ



• 5-layer fully connected perceptron


• Each task is a subset of EMNIST


• Inner loop data set size = 256


• Linear combo of 10 bio-inspired plasticity rules:
<latexit sha1_base64="njyuXDsjGlxowqZz16915hRF77U="></latexit>

F ( . . . ; ✓) =
X

k

✓kF (k)(. . .)

Our approach to meta-plasticity
ΔWℓ( j, k) = F(ypre(k), ypost( j), epre(k), epost( j); θ)
Bℓ fixed, random
Meta-learn θ
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Results

Hebbian plasticity on errors.

Theorem: In a linear network, this term 

pushes  toward Wℓ BT
ℓ−1

Pseudo-gradient term. If , 
this term would implement backprop.

Wℓ = BT
ℓ−1

Oja’s rule on activations. 
Causes hidden layers to perform 

PCA-like orthonormalization.



Results

Could this rule help align weights for 
learning via burst-dependent plasticity?

Hebbian plasticity on errors.

Theorem: In a linear network, this term 

pushes  toward Wℓ BT
ℓ−1



Future plans
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received the bulk of the INCs from Vip-Cre cells (nINCViplSst = 0.15; 
nINCPvalblSst = 0.03; nINCSstlSst = 0.02).

Because we computed the INCs listed above indirectly, based on the 
INCs of interneurons onto pyramidal cells and photostimulation of  large 
populations of interneurons, we directly verified three of the most sali-
ent INCs between interneurons, namely INCPvalblPvalb, INCSstlPvalb  
and INCViplSst, through paired recordings. We obtained uIPSQ and 
Pcon data between molecularly identified GFP-expressing interneu-
rons and nearby Pvalb-, Sst- or Vip-Cre cells (distance 25–100 Mm)  
visualized by tdTomato expression in the respective Cre line  
(Fig. 7b–e and Online Methods). Pvalb-Cre cells strongly inhibited Pvalb 
cells (uIPSQ = 2.76 o 0.69 pC; Pcon = 100%; n = 13). The INCPvalblPvalb  
obtained with paired recordings (2.76 pC) was very similar to that 
estimated with photostimulation (2.8 pC; P = 0.94). Sst-Cre cells 
inhibited Pvalb cells (uIPSQ = 0.77 o 0.21 pC; n = 12 Pcon = 85.7%; 
n = 14) and the INCSstlPvalb (0.66 pC) was similar to that measured 
using photostimulation (0.9 pC; P = 0.58). Finally, Vip-Cre cells inhib-
ited Sst cells (uIPSQ = 0.69 o 0.33 pC; n = 10; Pcon = 62.5%; n = 16) 
and the INCViplSst (0.43 pC) was again not significantly different 
than that estimated with photostimulation (0.42 pC; P = 0.46). Thus, 
the results indicate that the two methods, one using photostimulation 
and normalization onto a reference cell and the other using standard 
paired recordings, provided quantitatively similar results.

These data show that although Pvalb cells provide little inhibi-
tion onto other interneurons, they are the main source of their own  

inhibition by contributing three times more inhibition than Sst cells do. 
Furthermore, individual Sst cells contribute much more than individual  
Pvalb and Vip cells to the inhibition of all other interneuron cat-
egories. Finally, although individual Vip cells contributed relatively 
little inhibition, they still represented the main source of inhibition 
onto Sst cells (Fig. 7a,f,g; for statistical analysis between groups, see 
Supplementary Fig. 7d–f).

DISCUSSION
We established the connectivity pattern between molecularly defined 
classes of GABAergic interneurons in L2/3 and L5 of the mouse visual 
cortex. ‘Pvalb’, ‘Sst’ and ‘Vip’  cells exhibited a highly specific and com-
plementary network of connections. Although the biggest group, the 
Pvalb cells, strongly inhibited each other but weakly other interneu-
rons, the second largest group, the Sst cells, inhibited all interneuron 
categories but avoided inhibiting each other. Vip cells preferentially 
targeted Sst cells. This simple blueprint highlights a remarkable degree 
of specificity in the synaptic interactions between molecularly defined 
classes of cortical interneurons.

Our data highlight more similarities than differences between L2/3 
and L5 inhibitory networks: for example, the strength of the Pvalb-
Pvalb and Sst-Pvalb connections, and the lack of Sst-Sst and of Pvalb-
Sst connections was comparable across these two layers. The only 
notable difference was the strength of the Vip-Sst connection, which 
was larger in L2/3 than in L5, likely due to the concentration of Vip 
neurons in superficial layers.

Methodological considerations
Although space-clamp errors are inherent to whole-cell voltage-clamp 
experiments32, they are unlikely to influence the reported connectiv-
ity pattern. They may, however, affect the relative strength of con-
nections, given that distinct interneuron classes preferentially inhibit 
distinct subcellular compartments. Thus, the inhibition values given 
here report the strength as experienced by the soma of the recorded 
neuron rather than at the contact site. The relative connection strength 
may also be affected by the elimination of subcellular differences in 
chloride concentrations through whole-cell dialysis, thus abolishing 
differences in inhibitory driving force at distinct locations.
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Figure 7 Comparing individual neuronal contributions among cortical 
interneurons. (a) Heat map of the normalized individual neuronal 
contributions of the three presynaptic interneuron classes onto the 
six postsynaptic interneuron categories. (b) Schematics of paired 
recording configurations (top). Average uIPSC recorded in pyramidal 
cells in response to an action potential evoked in a defined presynaptic 
interneuron (bottom). Each trace represents the average postsynaptic 
current of a different paired recording. Pvalb onto Pvalb cells (left;  
n = 13; 13/13 connected pairs, 6 slices, 3 mice), Sst onto Pvalb cells 
(center; n = 14; 12/14 connected pairs, 6 slices, 3 mice) and Vip  
onto Sst cells (right; n = 16; 10/16 connected pairs, 7 slices, 3 mice). 
(c) uIPSQs recorded in interneurons and mediated by the three different 
presynaptic interneuron classes (Pvalb l Pvalb: n = 13; Sst l Pvalb:  
n = 12; Vip l Sst: n = 10; error bars, s.e.m.). (d) Connectivity probability 
between the three presynaptic interneuron classes and the respective 
postsynaptic interneurons. (e) Individual neuronal contribution (uIPSQ × 
connectivity probability) of the three presynaptic interneuron classes onto 
interneurons normalized by the individual neuronal contribution of Pvalb 
onto pyramidal cells. (f) Schematic of the connectivity pattern between 
the presynaptic interneuron classes (Pvalb, Sst and Vip) and postsynaptic 
interneuron categories (Pvalb, Sst, Vip, Tnfaip8l3, UD and L1) in  
L2/3 and L5 of mouse visual cortex (abbreviations as in Fig. 2e).  
(g) Schematic of the inhibitory connections among the three 
largest classes of interneurons (Pvalb, Sst, Vip) and pyramidal cells 
(abbreviations as in Fig. 2e).

(Pfeffer, et al., 2013)

• Build a framework for meta-plasticity in different models with different tasks.

• Evolve learning rules in multi-agent environments (gradient-free).
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received the bulk of the INCs from Vip-Cre cells (nINCViplSst = 0.15; 
nINCPvalblSst = 0.03; nINCSstlSst = 0.02).

Because we computed the INCs listed above indirectly, based on the 
INCs of interneurons onto pyramidal cells and photostimulation of  large 
populations of interneurons, we directly verified three of the most sali-
ent INCs between interneurons, namely INCPvalblPvalb, INCSstlPvalb  
and INCViplSst, through paired recordings. We obtained uIPSQ and 
Pcon data between molecularly identified GFP-expressing interneu-
rons and nearby Pvalb-, Sst- or Vip-Cre cells (distance 25–100 Mm)  
visualized by tdTomato expression in the respective Cre line  
(Fig. 7b–e and Online Methods). Pvalb-Cre cells strongly inhibited Pvalb 
cells (uIPSQ = 2.76 o 0.69 pC; Pcon = 100%; n = 13). The INCPvalblPvalb  
obtained with paired recordings (2.76 pC) was very similar to that 
estimated with photostimulation (2.8 pC; P = 0.94). Sst-Cre cells 
inhibited Pvalb cells (uIPSQ = 0.77 o 0.21 pC; n = 12 Pcon = 85.7%; 
n = 14) and the INCSstlPvalb (0.66 pC) was similar to that measured 
using photostimulation (0.9 pC; P = 0.58). Finally, Vip-Cre cells inhib-
ited Sst cells (uIPSQ = 0.69 o 0.33 pC; n = 10; Pcon = 62.5%; n = 16) 
and the INCViplSst (0.43 pC) was again not significantly different 
than that estimated with photostimulation (0.42 pC; P = 0.46). Thus, 
the results indicate that the two methods, one using photostimulation 
and normalization onto a reference cell and the other using standard 
paired recordings, provided quantitatively similar results.

These data show that although Pvalb cells provide little inhibi-
tion onto other interneurons, they are the main source of their own  

inhibition by contributing three times more inhibition than Sst cells do. 
Furthermore, individual Sst cells contribute much more than individual  
Pvalb and Vip cells to the inhibition of all other interneuron cat-
egories. Finally, although individual Vip cells contributed relatively 
little inhibition, they still represented the main source of inhibition 
onto Sst cells (Fig. 7a,f,g; for statistical analysis between groups, see 
Supplementary Fig. 7d–f).

DISCUSSION
We established the connectivity pattern between molecularly defined 
classes of GABAergic interneurons in L2/3 and L5 of the mouse visual 
cortex. ‘Pvalb’, ‘Sst’ and ‘Vip’  cells exhibited a highly specific and com-
plementary network of connections. Although the biggest group, the 
Pvalb cells, strongly inhibited each other but weakly other interneu-
rons, the second largest group, the Sst cells, inhibited all interneuron 
categories but avoided inhibiting each other. Vip cells preferentially 
targeted Sst cells. This simple blueprint highlights a remarkable degree 
of specificity in the synaptic interactions between molecularly defined 
classes of cortical interneurons.

Our data highlight more similarities than differences between L2/3 
and L5 inhibitory networks: for example, the strength of the Pvalb-
Pvalb and Sst-Pvalb connections, and the lack of Sst-Sst and of Pvalb-
Sst connections was comparable across these two layers. The only 
notable difference was the strength of the Vip-Sst connection, which 
was larger in L2/3 than in L5, likely due to the concentration of Vip 
neurons in superficial layers.

Methodological considerations
Although space-clamp errors are inherent to whole-cell voltage-clamp 
experiments32, they are unlikely to influence the reported connectiv-
ity pattern. They may, however, affect the relative strength of con-
nections, given that distinct interneuron classes preferentially inhibit 
distinct subcellular compartments. Thus, the inhibition values given 
here report the strength as experienced by the soma of the recorded 
neuron rather than at the contact site. The relative connection strength 
may also be affected by the elimination of subcellular differences in 
chloride concentrations through whole-cell dialysis, thus abolishing 
differences in inhibitory driving force at distinct locations.
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Figure 7 Comparing individual neuronal contributions among cortical 
interneurons. (a) Heat map of the normalized individual neuronal 
contributions of the three presynaptic interneuron classes onto the 
six postsynaptic interneuron categories. (b) Schematics of paired 
recording configurations (top). Average uIPSC recorded in pyramidal 
cells in response to an action potential evoked in a defined presynaptic 
interneuron (bottom). Each trace represents the average postsynaptic 
current of a different paired recording. Pvalb onto Pvalb cells (left;  
n = 13; 13/13 connected pairs, 6 slices, 3 mice), Sst onto Pvalb cells 
(center; n = 14; 12/14 connected pairs, 6 slices, 3 mice) and Vip  
onto Sst cells (right; n = 16; 10/16 connected pairs, 7 slices, 3 mice). 
(c) uIPSQs recorded in interneurons and mediated by the three different 
presynaptic interneuron classes (Pvalb l Pvalb: n = 13; Sst l Pvalb:  
n = 12; Vip l Sst: n = 10; error bars, s.e.m.). (d) Connectivity probability 
between the three presynaptic interneuron classes and the respective 
postsynaptic interneurons. (e) Individual neuronal contribution (uIPSQ × 
connectivity probability) of the three presynaptic interneuron classes onto 
interneurons normalized by the individual neuronal contribution of Pvalb 
onto pyramidal cells. (f) Schematic of the connectivity pattern between 
the presynaptic interneuron classes (Pvalb, Sst and Vip) and postsynaptic 
interneuron categories (Pvalb, Sst, Vip, Tnfaip8l3, UD and L1) in  
L2/3 and L5 of mouse visual cortex (abbreviations as in Fig. 2e).  
(g) Schematic of the inhibitory connections among the three 
largest classes of interneurons (Pvalb, Sst, Vip) and pyramidal cells 
(abbreviations as in Fig. 2e).

(Pfeffer, et al., 2013)

• Build a framework for meta-plasticity in different models with different tasks.

• Evolve learning rules in multi-agent environments (gradient-free).

x y x

plasticity trains unsupervised 
representation

y L(y, ̂y)

meta-loss evaluates suitability for 
supervised learning

x

Undergrad researcher: Sarah Duessing



Future plans
• Build a framework for meta-plasticity in different models with different tasks.

• Evolve learning rules in multi-agent environments (gradient-free).

Neural MMO by OpenAI
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received the bulk of the INCs from Vip-Cre cells (nINCViplSst = 0.15; 
nINCPvalblSst = 0.03; nINCSstlSst = 0.02).

Because we computed the INCs listed above indirectly, based on the 
INCs of interneurons onto pyramidal cells and photostimulation of  large 
populations of interneurons, we directly verified three of the most sali-
ent INCs between interneurons, namely INCPvalblPvalb, INCSstlPvalb  
and INCViplSst, through paired recordings. We obtained uIPSQ and 
Pcon data between molecularly identified GFP-expressing interneu-
rons and nearby Pvalb-, Sst- or Vip-Cre cells (distance 25–100 Mm)  
visualized by tdTomato expression in the respective Cre line  
(Fig. 7b–e and Online Methods). Pvalb-Cre cells strongly inhibited Pvalb 
cells (uIPSQ = 2.76 o 0.69 pC; Pcon = 100%; n = 13). The INCPvalblPvalb  
obtained with paired recordings (2.76 pC) was very similar to that 
estimated with photostimulation (2.8 pC; P = 0.94). Sst-Cre cells 
inhibited Pvalb cells (uIPSQ = 0.77 o 0.21 pC; n = 12 Pcon = 85.7%; 
n = 14) and the INCSstlPvalb (0.66 pC) was similar to that measured 
using photostimulation (0.9 pC; P = 0.58). Finally, Vip-Cre cells inhib-
ited Sst cells (uIPSQ = 0.69 o 0.33 pC; n = 10; Pcon = 62.5%; n = 16) 
and the INCViplSst (0.43 pC) was again not significantly different 
than that estimated with photostimulation (0.42 pC; P = 0.46). Thus, 
the results indicate that the two methods, one using photostimulation 
and normalization onto a reference cell and the other using standard 
paired recordings, provided quantitatively similar results.

These data show that although Pvalb cells provide little inhibi-
tion onto other interneurons, they are the main source of their own  

inhibition by contributing three times more inhibition than Sst cells do. 
Furthermore, individual Sst cells contribute much more than individual  
Pvalb and Vip cells to the inhibition of all other interneuron cat-
egories. Finally, although individual Vip cells contributed relatively 
little inhibition, they still represented the main source of inhibition 
onto Sst cells (Fig. 7a,f,g; for statistical analysis between groups, see 
Supplementary Fig. 7d–f).

DISCUSSION
We established the connectivity pattern between molecularly defined 
classes of GABAergic interneurons in L2/3 and L5 of the mouse visual 
cortex. ‘Pvalb’, ‘Sst’ and ‘Vip’  cells exhibited a highly specific and com-
plementary network of connections. Although the biggest group, the 
Pvalb cells, strongly inhibited each other but weakly other interneu-
rons, the second largest group, the Sst cells, inhibited all interneuron 
categories but avoided inhibiting each other. Vip cells preferentially 
targeted Sst cells. This simple blueprint highlights a remarkable degree 
of specificity in the synaptic interactions between molecularly defined 
classes of cortical interneurons.

Our data highlight more similarities than differences between L2/3 
and L5 inhibitory networks: for example, the strength of the Pvalb-
Pvalb and Sst-Pvalb connections, and the lack of Sst-Sst and of Pvalb-
Sst connections was comparable across these two layers. The only 
notable difference was the strength of the Vip-Sst connection, which 
was larger in L2/3 than in L5, likely due to the concentration of Vip 
neurons in superficial layers.

Methodological considerations
Although space-clamp errors are inherent to whole-cell voltage-clamp 
experiments32, they are unlikely to influence the reported connectiv-
ity pattern. They may, however, affect the relative strength of con-
nections, given that distinct interneuron classes preferentially inhibit 
distinct subcellular compartments. Thus, the inhibition values given 
here report the strength as experienced by the soma of the recorded 
neuron rather than at the contact site. The relative connection strength 
may also be affected by the elimination of subcellular differences in 
chloride concentrations through whole-cell dialysis, thus abolishing 
differences in inhibitory driving force at distinct locations.
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Figure 7 Comparing individual neuronal contributions among cortical 
interneurons. (a) Heat map of the normalized individual neuronal 
contributions of the three presynaptic interneuron classes onto the 
six postsynaptic interneuron categories. (b) Schematics of paired 
recording configurations (top). Average uIPSC recorded in pyramidal 
cells in response to an action potential evoked in a defined presynaptic 
interneuron (bottom). Each trace represents the average postsynaptic 
current of a different paired recording. Pvalb onto Pvalb cells (left;  
n = 13; 13/13 connected pairs, 6 slices, 3 mice), Sst onto Pvalb cells 
(center; n = 14; 12/14 connected pairs, 6 slices, 3 mice) and Vip  
onto Sst cells (right; n = 16; 10/16 connected pairs, 7 slices, 3 mice). 
(c) uIPSQs recorded in interneurons and mediated by the three different 
presynaptic interneuron classes (Pvalb l Pvalb: n = 13; Sst l Pvalb:  
n = 12; Vip l Sst: n = 10; error bars, s.e.m.). (d) Connectivity probability 
between the three presynaptic interneuron classes and the respective 
postsynaptic interneurons. (e) Individual neuronal contribution (uIPSQ × 
connectivity probability) of the three presynaptic interneuron classes onto 
interneurons normalized by the individual neuronal contribution of Pvalb 
onto pyramidal cells. (f) Schematic of the connectivity pattern between 
the presynaptic interneuron classes (Pvalb, Sst and Vip) and postsynaptic 
interneuron categories (Pvalb, Sst, Vip, Tnfaip8l3, UD and L1) in  
L2/3 and L5 of mouse visual cortex (abbreviations as in Fig. 2e).  
(g) Schematic of the inhibitory connections among the three 
largest classes of interneurons (Pvalb, Sst, Vip) and pyramidal cells 
(abbreviations as in Fig. 2e).

(Pfeffer, et al., 2013)
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