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Representation Learning

“ In the previous lecture, we used non-parametric approaches to
extract features from graphs.

“* These features were then fed to a machine learning model to
perform various tasks.
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Representation Learning

“ In the previous lecture, we used non-parametric approaches to
extract features from graphs.

“* These features were then fed to a machine learning model to
perform various tasks.

< In this lecture, we discuss methods to discover the
representation rather than hand-designing them.

“* These approaches are referred to as representation learning.

*» Learned representations perform better than the hand-
designed features in the downstream learning tasks.

“ In this lecture, we discuss learning feature representations for
nodes.
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Node Embedding

“* Node feature vectors z;, also called a node embedding, are
low-dimensional vectors that represent the node on a low-
dimensional space.

“* This node embedding codifies the node’s local structure and
global position within the graph with a vector of real values
Z; (S ]RD.
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Node Embedding

“* Node feature vectors z;, also called a node embedding, are
low-dimensional vectors that represent the node on a low-
dimensional space.

“* This node embedding codifies the node’s local structure and
global position within the graph with a vector of real values
Z; (S ]RD.

Latent
Graph Space
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Node Embedding

“» With an appropriate latent representation, the distance
between two node embeddings z; and z; should preserve the

relation between the corresponding nodes v; and v;.

“* These feature representations are used as inputs to different
machine learning models to perform different tasks.
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Node Embedding

“» With an appropriate latent representation, the distance
between two node embeddings z; and z; should preserve the

relation between the corresponding nodes v; and v;.

“* These feature representations are used as inputs to different
machine learning models to perform different tasks.

» Node classification

e X%

-

,\\‘ 0y _>P(X:Fake)

Z; P(X — Real )
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Node Embedding

< One approach to construct a graph embedding is through

concatenating node embeddings
Y

211 2Vl

Graph
Embedding 21D L AvID
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Node Embedding

< One approach to construct a graph embedding is through

concatenating node embeddings

211 V1

Graph
Embedding 21D v+ L AvVID

“+ This graph embedding can be used to perform graph-level
machine learning tasks.

T
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Node Embedding

< One approach to construct a graph embedding is through

concatenating node embeddings

211 V1

Graph
Embedding 21D v+ L AvVID

“+ This graph embedding can be used to perform graph-level
machine learning tasks.
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Node Embedding

< One approach to construct a graph embedding is through

concatenating node embeddings

211 V1

Graph
Embedding 21D v+ L AvVID

“+ This graph embedding can be used to perform graph-level
machine learning tasks.
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Node Embedding

< One approach to construct a graph embedding is through

|4

concatenating node embeddings

Graph
Embedding

21D

“lvia

| ?|VID

“+ This graph embedding can be used to perform graph-level
machine learning tasks.
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Node Embedding

% One approach to construct a graph embedding is through
concatenating node embeddings

A

211 V1

Graph
Embedding 21D L AvID

“+ This graph embedding can be used to perform graph-level
machine learning tasks.

“* This, however, is not the best approach to perform this.
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Encoder-Decoder Approach

“* One standard approach to representation learning is through
the encoder-decoder architecture.

“* Encoder is a map f,: x — z that projects a data point x to a
latent space Z c RP.

X — fo — 2

< Through this mapping, x is converted to a low-dimensional
embedding vector z € R”.
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Encoder-Decoder Approach

“* One standard approach to representation learning is through
the encoder-decoder architecture.

“* Encoder is a map f,: x — z that projects a data point x to a
latent space Z c RP.

X — fo — 2

< Through this mapping, x is converted to a low-dimensional
embedding vector z € R”.

< Decoder is a map f;:z — x, that reconstructs data point x from
its latent representation z.

A

Z—>fd—>X
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Encoder-Decoder Approach

“* An encoder-decoder architecture trains f, and f,
simultaneously such that the encoder maps x to z and the
decoder uses feature vector z to reconstruct the original x
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Encoder-Decoder Approach

“* An encoder-decoder architecture trains f, and f,
simultaneously such that the encoder maps x to z and the
decoder uses feature vector z to reconstruct the original x

“* The objective of this architecture is to reconstruct X as similar
as possible to x.

% This objective can be formulated as minimizing a loss function
that measures this closeness

L(z,x) = L(x, fa (fe(2)))

==
NOTRE DAME ACMS 80770: Deep Learning with Graphs, Navid Shervani-Tabar

17



Encoder-Decoder Approach

< We formulate learning the node embeddings as an encoder
decoder problem.

“ In this setting

> The encoder f,:V —» RP, is a function parameterized by 6,
that maps a node v; € V to embedding vector z; € RP.

A

V — fe_’Z_’fd_’S
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Encoder-Decoder Approach

< We formulate learning the node embeddings as an encoder
decoder problem.

“ In this setting

> The encoder f,:V —» RP, is a function parameterized by 6,
that maps a node v; € V to embedding vector z; € RP.

> The decoder f;: RPxRP - R*, is a function parameterized by
0, that reconstructs the local structure of the node given its
embedding.

A

V — fe_’Z_’fd_’S
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Encoder-Decoder Approach

“* To establish the framework, we need to define the following
elements

» Encoder

A

V_’[fe]_’z_’ Ja. — S

A

arg gnigrcll L(S,S)
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Encoder-Decoder Approach

“* To establish the framework, we need to define the following
elements

» Encoder

» Decoder

A

Vi —  Je _’Z_’[fdJ_’S

A

arg gnigrcll L(S,S)
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Encoder-Decoder Approach

“* To establish the framework, we need to define the following
elements
» Encoder
» Decoder

» Measure of similarity

A

V — fe_’Z_’fd_’S

A

arg gnigrcll L(S,S)
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Encoder-Decoder Approach

“* To establish the framework, we need to define the following
elements
» Encoder
» Decoder
» Measure of similarity

» Objective function

A

V — fe_’Z_’fd_’S

A

arg Gmieri L(S,S)
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Encoder

“* We rely on shallow embedding method to learn node
representations.

< In this method, the encoder f, is an embedding look up that
only takes the node index i as input and returns an embedding
z; € RP for the node.

% Given node v;

< = fe(vz'; 96)

ot UNIVERSITY OF
E8) NOTRE DAME ACMS 80770: Deep Learning with Graphs, Navid Shervani-Tabar

24



Encoder

“* We rely on shallow embedding method to learn node
representations.

< In this method, the encoder f, is an embedding look up that
only takes the node index i as input and returns an embedding
z; € RP for the node.

% Given node v;
zi = fe(vi;0e)

< Given the set of graph nodes V, encoder f, returns an
embedding dictionary Z € RIVI*D

7 = fe(v; 96)
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Encoder

“* Encoder f, is a dictionary look up that given node index,
returns
z; = Zel)

where e® € {0,1}/V! is an indicator vector for node v;.

Zel) =

UNIVERSITY OF
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Encoder

“* Encoder f, is a dictionary look up that given node index,
returns
z; = Zel)

where e® € {0,1}/V! is an indicator vector for node v;.

211 2V 0
Ze') = 1
Lz | - Lavip ] LO._
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Encoder

“* Encoder f, is a dictionary look up that given node index,
returns
z; = Zel)

where e® € {0,1}/V! is an indicator vector for node v;.

211 2V |1 0 Zi1
Zel) = 1 | =
Lzp ] - Levip J] LO_ | ZiD
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Encoder

“* Encoder f, is a dictionary look up that given node index,
returns
z; = Zel)

where e® € {0,1}/V! is an indicator vector for node v;.

211 2V 0 Zi1
Lzp | - Lzvip ]l L0 | ZiD |

“*» Therefore, embedding Z is learned as model parameter for
the encoder

Z =20,
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Encoder

“* This type of encoder does not use the local structure or
neighborhood of the node to yield an embedding.

% Adding this elements leads to . . .

A

A — fo — Z — fqg — S

/

Graph
Structure

Z = fe (A7 96)
£ RIVIXIVI Ly RIVIXD

E‘ UNIVERSITY OF
4 NOTRE DAME ACMS 80770: Deep Learning with Graphs, Navid Shervani-Tabar

30



Encoder

“* This type of encoder does not use the local structure or
neighborhood of the node to yield an embedding.

+» |t also does not use the node features.

< Adding these elements leads to . . .

A

A)X—» fe—>Z—>fd—>S

J L
Graph \‘ Node fC/Z . X

Structure Attributes

Z=f.(AX;6,.)
fe : ]R|V|><|V| X ]R|V|XF N R|V|XD
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Encoder

“* This type of encoder does not use the local structure or
neighborhood of the node to yield an embedding.

+» |t also does not use the node features.

< Adding these elements leads to Graph Neural Network (GNN)
architectures.

A

A)X—» f€—>Z—>fd—>S

/ L
Graph \‘ Node fc/Z . X

Structure Attributes

Z=f.(AX;6,.)
£ RIVIXIVE  RIVIXF _, RIVIXD
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Similarity Measure

“* The goal of the encoder decoder framework is to reconstruct
node’s local structure and relationship to other nodes.

“ This is done by reconstructing pairwise relationship of the
nodes in the graph.

UNIVERSITY OF
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Similarity Measure

“* The goal of the encoder decoder framework is to reconstruct
node’s local structure and relationship to other nodes.

“ This is done by reconstructing pairwise relationship of the
nodes in the graph.
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Similarity Measure

“* The goal of the encoder decoder framework is to reconstruct
node’s local structure and relationship to other nodes.

“ This is done by reconstructing pairwise relationship of the
nodes in the graph.

“ Simplest approach would be to reconstruct the neighborhood.

e —
<q
Ug N (Ui )
UNIVERSITY OF
NOTRE DAME ACMS 80770: Deep Learning with Graphs, Navid Shervani-Tabar

35



Similarity Measure

“* We can reconstruct that by finding the corresponding row of
the adjacency matrix A; for a node v;.

1 1
A, — 11 1 1
1
U;
N(Uz‘) w1
11
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Similarity Measure

“* We can reconstruct that by finding the corresponding row of
the adjacency matrix A; for a node v;.

“* Likewise, we can set a transformation of the adjacency matrix
or any node-node similarity measure S discussed in the
previous lectures as the framework’s reconstruction goal.

A, -1 1. 1

N SHEHEE
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Decoder

“* Decoder f,; reconstructs the desired similarity measure S for
a neighborhood N (v;) of node v; given its latent representation
Z;.

“+ To reconstruct the matrix-based similarity measures, one
popular choice for the decoder is to use the inner product of
the embedding vectors of two nodes v; and v;.
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Decoder

“* Decoder f,; reconstructs the desired similarity measure S for
a neighborhood N (v;) of node v; given its latent representation
Z;.

“+ To reconstruct the matrix-based similarity measures, one
popular choice for the decoder is to use the inner product of
the embedding vectors of two nodes v; and v;.

> The decoder f;: RPxRP - R* uses inner product
fa(zi, z;) = 2} z;
to predict the node similarity Sij of nodes v; and v;.
Zj

Zi
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Decoder

< Some methods rely on distance to quantify the closeness of
the node embeddings.

UNIVERSITY OF
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Decoder

< Some methods rely on distance to quantify the closeness of
the node embeddings.

> The decoder f;: RPxRP - R* uses a distance function I
fa (z’ia Zj) — l(ziv zj)
to measure closeness of nodes v; and v;.

< The distance between embedding vectors z; and z; is

measured based on the nature of the underlying embedding
space.
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Decoder

< Some methods rely on distance to quantify the closeness of
the node embeddings.

> The decoder f;: RPxRP - R* uses a distance function I
fa (z’i7 Zj) — l(ziv zj)
to measure closeness of nodes v; and v;.

< The distance between embedding vectors z; and z; is

measured based on the nature of the underlying embedding
space.

“» For probabilistic similarity measures, where the similarity is in
the form p(v;|v;), the decoder should return a probability

using functions like a softmax function.
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Objective function

+» The encoder-decoder framework aims to

» Learn embeddings Z of nodes IV using the encoder f,.

» Reconstruct some user-defined notion of similarity S
between nodes using the decoder f,.
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Objective function

+» The encoder-decoder framework aims to

» Learn embeddings Z of nodes IV using the encoder f,.

» Reconstruct some user-defined notion of similarity S
between nodes using the decoder f,.

“» The optimization objective minimizes the discrepancy
between the reconstructed structure § and the similarity
measure S over the set of edges E in the graph G.
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Objective function

+» The encoder-decoder framework aims to

» Learn embeddings Z of nodes IV using the encoder f,.

» Reconstruct some user-defined notion of similarity S
between nodes using the decoder f,.

“» The optimization objective minimizes the discrepancy
between the reconstructed structure § and the similarity
measure S over the set of edges E in the graph G.

“» Mathematically put,

L(S,8) = > U(Sij, fa(vi, v;))

cel

with 2: RXR - R.
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Embedding Learning Methods

“+ Based on the choice of the objective function, decoder, and
similarity, we can learn different node embeddings.

< Deterministic approaches to learn node embeddings are

divided into following categories based on decoding:

» Distance-based methods
- Laplacian Eigenmaps
* Multi-dimensional Scaling (MDS)
* Non-Euclidean methods

» QOuter product methods
« Graph Factorization
« GraRep

ot UNIVERSITY OF
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Laplacian Eigenmap

<+ Laplacian Eigenmap or Spectral embedding is a classical
approach to learn embeddings.

*+ This approach minimizes the distance between a data point
with its neighbors in the embedding space.
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Laplacian Eigenmap

<+ Laplacian Eigenmap or Spectral embedding is a classical
approach to learn embeddings.

*+ This approach minimizes the distance between a data point
with its neighbors in the embedding space.

% This objective function can be formulated as
L(Z) =) Y Aillzi — 2l
i

< Intuitively, when neighboring nodes v; and v; have embeddings
z; and z; that are distant from each other, loss function
penalizes the optimization algorithm
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Laplacian Eigenmap

** In an encoder-decoder framework, we reformulate this as

 Decoder
Sij — fd(Zz'»Zj) — sz' - Zng
* Loss function

L(A,S) =) > Ay;S;
(|

“* We can reformulate the decoder f; as

2

|zi — Zng — [\/(zil - Zj1)2 A (Zin — Zjn)2

2 2 2 2
_Zi1_|_..._|_zin_|_zj1_|_..._|_zjn
— 2231250 — - — 22ZinZjn

2
=[|zill3 + [|2,]13 — 2z:27
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Laplacian Eigenmap

“* Plugging this in the loss equation, we get
£A8) =33 Ay (I3l + 12513 - 22027 )
(2
= Z ZAij |zl + ZZA” |2;l5 — ZZ ZAijziij
i g (2 L
= Zdz‘ |zill5 + Zdj |2;515 — QZ ZAijZizf
7 J ? J
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Laplacian Eigenmap

“* Plugging this in the loss equation, we get
£A8) =3 Ay (I3l + 125113 - 22027 )
(2
= Z ZAij |zl + ZZA” |2;l5 - ZZ ZAijzz-z]T
i (2 L
= Zdz‘ |zill5 + Zdj |2;5115 — QZ ZA@Z@'Z?
7 J ? J

—927'DZ7 — 2727 AZ

=2Z1' (D - A)Z
** Therefore
L£(Z)=2Z"LZ
J UNIVERSITY OF
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Laplacian Eigenmap

“* Therefore, we rewrite the objective function as

min ZTLZ
Z
subject to ZTDT> =0
7Z'DZ =1

“ The reformulated objective function shows that Laplacian
Eigenmap build upon the spectral clustering ideas to construct
node embeddings.

< Similar to the spectral clustering, the solution for Z c R? is the
last D eigenvectors with non-zero eigenvalues.

ot UNIVERSITY OF
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Laplacian Eigenmap

“* Therefore, we rewrite the objective function as

min ZTLZ
Z
subject to ZTDT> =0
7Z'DZ =1

“ The reformulated objective function shows that Laplacian
Eigenmap build upon the spectral clustering ideas to construct
node embeddings.

< Similar to the spectral clustering, the solution for Z c R? is the
last D eigenvectors with non-zero eigenvalues.

< While we used adjacency matrix as similarity for the derivation,
we can use any similarity matrix that has properties of the
Laplacian L.
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Multi-Dimensional Scaling

“» Another node embedding approach based upon classical
manifold learning methods is MDS.

“ In this approach, the distance between the learned
embeddings z; and z; preserves the dissimilarity between the

corresponding nodes v; and v;.
“* The node-node dissimilarity measure [ is user-defined

(3

G
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Multi-Dimensional Scaling

“» Another node embedding approach based upon classical
manifold learning methods is MDS.

“ In this approach, the distance between the learned
embeddings z; and z; preserves the dissimilarity between the

corresponding nodes v; and v;.

“* The node-node dissimilarity measure [ is user-defined
» Shortest path between two nodes.

(3

G
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Multi-Dimensional Scaling

“» Another node embedding approach based upon classical
manifold learning methods is MDS.

“ In this approach, the distance between the learned
embeddings z; and z; preserves the dissimilarity between the

corresponding nodes v; and v;.

“* The node-node dissimilarity measure [ is user-defined
» Shortest path between two nodes.

G
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Multi-Dimensional Scaling

“* In the encoder-decoder framework, the MDS approach is
formulated as

» The loss function £ is defined as
L£(S,8) =S - Sli
» The decoder f; is formulated as
gz’j = fa(zi,25) = ||z — Zj”z

» The distance matrix § can be any method that reflects
dissimilarity of a pair of nodes on the graph
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Non-Euclidean methods

“ In the previous method, the underlying feature representation
of the graph is assumed to lie on a Euclidean space.

«* That means we use L2 norm to measure the distance
between tow points on the feature space.

“* Not all data can best be represented on a Euclidean feature
space.
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Non-Euclidean methods

“ In the previous method, the underlying feature representation
of the graph is assumed to lie on a Euclidean space.

«* That means we use L2 norm to measure the distance
between tow points on the feature space.

“* Not all data can best be represented on a Euclidean feature
space.

“* For instance, feature representation for hierarchical graphs
are ideally represented on a hyperbolic space, which has a
hierarchical structure
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Non-Euclidean methods

* To that end, we need to use a hyperbolic distance, also known
as Poincaré distance.

“* In the encoder-decoder framework, the MDS approach is
formulated as

J UNIVERSITY OF
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Non-Euclidean methods

* To that end, we need to use a hyperbolic distance, also known
as Poincaré distance.

“* In the encoder-decoder framework, the MDS approach is
formulated as

» The decoder f; is formulated as

2
|zi — 245

gij — fd(zia zj) — lPoincaré <Zi7 zj) = arcosh [ 1+ 2 2 5
(1= 11=:03) (1= 11=513)

» The loss function L is defined as

A exp(—flij)
L(AA) = E E A;:lo ~
( ) i o bl Ag=0 ©XP(—Aik)
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Graph Factorization

“* More recent approaches instead use outer product-based
decoder models.

“* The idea is that the dot product of two feature vectors z; and
z; measures the similarity of corresponding nodes v; and v;.
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Graph Factorization

“* More recent approaches instead use outer product-based
decoder models.

“* The idea is that the dot product of two feature vectors z; and
z; measures the similarity of corresponding nodes v; and v;.

“ In this approach, we define the decoder as the inner product of
the pair of embeddings
gz'j = fa(zi, 25) = Z?Zj
“ In matrix notation, this is written as

S =777

ot UNIVERSITY OF
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Graph Factorization

“* More recent approaches instead use outer product-based
decoder models.

“* The idea is that the dot product of two feature vectors z; and
z; measures the similarity of corresponding nodes v; and v;.

“ In this approach, we define the decoder as the inner product of
the pair of embeddings

Sz'j = fa(zi, z;) = Z?Zj
** In matrix notation, this is written as
S =777
*» The loss function is defined as
£(85.8) = > (S~ Sij)Q
(vi,v;)ERE
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Graph Factorization

**» The loss function

UNIVERSITY OF

NOTRE DAME

ACMS 80770: Deep Learning with Graphs, Navid Shervani-Tabar

65



Graph Factorization

**» The loss function

(vi,v;)EE
_ Z Z Ay (Sz-j _ §ij)2
i

“* In matrix notation, the loss function can be expressed as

~ ~ 2
£(s.8) = |[aes-9)
F
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Graph Factorization

**» The loss function

£(85:55) = > (Su- Sz-j)z

(vi,v;)EE
_ ZZA” (Sij _ Sij)Q
i

“* In matrix notation, the loss function can be expressed as
2

£(S,8) = ||A o (S — S)HF

“* Therefore, the solution to this minimization problem can be
found through a matrix factorization approach.

S=77Z"~S

% We can find the optimal Z through matrix factorization
approaches such as SVD.
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GraRep

“* One downside of the approached discussed so far is that they
reconstruct a symmetric similarity measure.

“ This limits use of these approaches in the directed graphs.
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GraRep

“* One downside of the approached discussed so far is that they
reconstruct a symmetric similarity measure.

“ This limits use of these approaches in the directed graphs.

< The similarity measure used by GraRep model resolves this
ISsue.

“+ This approach defines the similarity measure between to
nodes as probability value of transition from v; to v;.

A
Py ="
J dz
** In matrix notation
P=D'A
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GraRep

“* We can leverage this to capture k —step transition
probability from v; to v; as

Pk = D FAF

< By using P* as the reconstruction goal, the learned embedding
will capture k-step relations between the two nodes.
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GraRep

“* We can leverage this to capture k —step transition
probability from v; to v; as

P =D *A”
< By using P* as the reconstruction goal, the learned embedding
will capture k-step relations between the two nodes.

< GraRep defines K different reconstruction goals P* with
k =1, ..., K to learn embeddings capturing different k-step
transition probability

~ ~ 2
Ly(P,P) = HP‘c _P(k)|‘F
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GraRep

“* We can leverage this to capture k —step transition
probability from v; to v; as

Pk = D FAF

< By using P* as the reconstruction goal, the learned embedding
will capture k-step relations between the two nodes.

< GraRep defines K different reconstruction goals P* with
k =1, ..., K to learn embeddings capturing different k-step
transition probability

~ ~ 2
Ly(P,P) = HP‘c —P(’“)HF

< Using matrix factorization, minimizing £ has the solution

p" — 7.27 ~ P
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GraRep

< Given the asymmetric reconstruction goal P*, the decoder is
the outer product of two embedding matrices.

P =7.7T
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GraRep

< Given the asymmetric reconstruction goal P*, the decoder is
the outer product of two embedding matrices.

P =7.7T
“* For a pair of embeddings, decoder is defined as

fd(Z(k) (k) ) = (k),T (k)

i,50urce’ Zj,Target _ Zi,Source 7, Target

Where the embedding is defined separately for source node
and target node:

» The first embedding z; ;,,-ce COrresponds to the source
node v;.

» the second one z; ;4,-4¢: COrrespond to the destination node

'Uj.
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GraRep

“* Minimizing each loss function
A ~ 2
L,(P,P) = HP’“ _ P("“)H
F

Learns embeddings that capture k —step transition
probabilities.
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GraRep

“* Minimizing each loss function
A ~ 2
L,(P,P) = HP’“ _ P("“)H
F

Learns embeddings that capture k —step transition
probabilities.

< GraRep solves this problem for K matrices P*, where
k=1,..,K.
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GraRep

“* Minimizing each loss function
A ~ 2
£ p) - [pt 2
Learns embeddings that capture k —step transition
probabilities.

< GraRep solves this problem for K matrices P*, where
k=1,..,K.

< Then, the node embeddings for source and target nodes are

constructed by concatenating the embeddings learned from
each k —step transition matrix.

Lsource = -Zé(l)%rce | T |Z§(I§1)1rce }
(1 k
Ztarget — _Z’Eazget ‘ T |Z’Ea1)'get }
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Summary

“* Learning Node embedding
< Encoder-Decoder framework
»» Encoder

2 Similarity Measure

»» Decoder

2 Reconstruction Objective

»» Deterministic approaches to learning node embeddings
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Summary

“» Deterministic approaches to learning node embeddings
» Distance-based methods
- Laplacian Eigenmaps
* Multi-dimensional Scaling (MDS)
* Non-Euclidean methods
» QOuter product methods
« Graph Factorization
« GraRep
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