Deterministic Approaches to Learn Node Embedding

ACMS 80770: Deep Learning with Graphs

Instructor: Navid Shervani-Tabar

Department of Applied and Comp Math and Stats

Representation Learning

- In the previous lecture, we used non-parametric approaches to extract features from graphs.
- These features were then fed to a machine learning model to perform various tasks.

Representation Learning

- In the previous lecture, we used non-parametric approaches to extract features from graphs.
- These features were then fed to a machine learning model to perform various tasks.
- In this lecture, we discuss methods to discover the representation rather than hand-designing them.
- These approaches are referred to as representation learning.
- Learned representations perform better than the handdesigned features in the downstream learning tasks.
- In this lecture, we discuss learning feature representations for nodes.

- Node feature vectors z_i , also called a **node embedding**, are low-dimensional vectors that represent the node on a low-dimensional space.
- This node embedding codifies the node's local **structure** and global **position** within the graph with a vector of real values $z_i \in \mathbb{R}^D$.

- Node feature vectors z_i , also called a **node embedding**, are low-dimensional vectors that represent the node on a low-dimensional space.
- This node embedding codifies the node's local **structure** and global **position** within the graph with a vector of real values $z_i \in \mathbb{R}^D$.

- * With an appropriate latent representation, the distance between two node embeddings z_i and z_j should **preserve** the relation between the corresponding nodes v_i and v_j .
- These feature representations are used as inputs to different machine learning models to perform different tasks.

- * With an appropriate latent representation, the distance between two node embeddings z_i and z_j should **preserve** the relation between the corresponding nodes v_i and v_j .
- These feature representations are used as inputs to different machine learning models to perform different tasks.
 - Node classification

One approach to construct a graph embedding is through concatenating node embeddings

One approach to construct a graph embedding is through concatenating node embeddings

One approach to construct a graph embedding is through concatenating node embeddings

One approach to construct a graph embedding is through concatenating node embeddings

One approach to construct a graph embedding is through concatenating node embeddings

One approach to construct a graph embedding is through concatenating node embeddings

- This graph embedding can be used to perform graph-level machine learning tasks.
- This, however, is not the best approach to perform this.

- One standard approach to representation learning is through the encoder-decoder architecture.
- ❖ Encoder is a map f_e : $x \to z$ that projects a data point x to a latent space $Z \subset \mathbb{R}^D$.

$$\mathbf{x} \longrightarrow f_e \longrightarrow \mathbf{z}$$

* Through this mapping, x is converted to a low-dimensional embedding vector $z \in \mathbb{R}^D$.

- One standard approach to representation learning is through the encoder-decoder architecture.
- ❖ Encoder is a map f_e : $x \to z$ that projects a data point x to a latent space $Z \subset \mathbb{R}^D$.

$$\mathbf{x} \longrightarrow f_e \longrightarrow \mathbf{z}$$

- * Through this mapping, x is converted to a low-dimensional embedding vector $z \in \mathbb{R}^D$.
- ❖ Decoder is a map f_d : $z \to x$, that reconstructs data point x from its latent representation z.

$$z \longrightarrow f_d \longrightarrow \hat{\mathbf{x}}$$

 \clubsuit An encoder-decoder architecture trains f_e and f_d simultaneously such that the encoder maps x to z and the decoder uses feature vector z to reconstruct the original x

 \clubsuit An encoder-decoder architecture trains f_e and f_d simultaneously such that the encoder maps x to z and the decoder uses feature vector z to reconstruct the original x

$$\mathbf{x} \longrightarrow f_e \longrightarrow \mathbf{z} \longrightarrow f_d \longrightarrow \hat{\mathbf{x}}$$

$$\hat{\mathbf{x}} = f_d(f_e(\mathbf{x}))$$

- * The objective of this architecture is to reconstruct \hat{x} as similar as possible to x.
- This objective can be formulated as minimizing a loss function that measures this closeness

$$\mathcal{L}(\boldsymbol{x}, \hat{\boldsymbol{x}}) = \mathcal{L}(\boldsymbol{x}, f_d(f_e(\boldsymbol{x})))$$

- We formulate learning the node embeddings as an encoder decoder problem.
- In this setting
 - The encoder $f_e: V \to \mathbb{R}^D$, is a function parameterized by θ_e that maps a node $v_i \in V$ to embedding vector $\mathbf{z}_i \in \mathbb{R}^D$.

$$V \longrightarrow f_e \longrightarrow \mathbf{Z} \longrightarrow f_d \longrightarrow \hat{\mathbf{S}}$$

- We formulate learning the node embeddings as an encoder decoder problem.
- In this setting
 - The encoder $f_e: V \to \mathbb{R}^D$, is a function parameterized by θ_e that maps a node $v_i \in V$ to embedding vector $\mathbf{z}_i \in \mathbb{R}^D$.
 - The decoder $f_d: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}^+$, is a function parameterized by θ_d that reconstructs the local structure of the node given its embedding.

$$V \longrightarrow f_e \longrightarrow \mathbf{Z} \longrightarrow f_d \longrightarrow \hat{\mathbf{S}}$$

- To establish the framework, we need to define the following elements
 - Encoder

$$V \longrightarrow f_e \longrightarrow \mathbf{Z} \longrightarrow f_d \longrightarrow \hat{\mathbf{S}}$$

$$\arg \min_{\theta_e, \theta_d} \mathcal{L}(\mathbf{S}, \hat{\mathbf{S}})$$

- To establish the framework, we need to define the following elements
 - Encoder
 - Decoder

$$V \longrightarrow f_e \longrightarrow \mathbf{Z} \longrightarrow f_d \longrightarrow \hat{\mathbf{S}}$$

$$rg\min_{ heta_e, heta_d} \mathcal{L}(\mathbf{S}, \hat{\mathbf{S}})$$

- To establish the framework, we need to define the following elements
 - Encoder
 - Decoder
 - Measure of similarity

$$V \longrightarrow f_e \longrightarrow \mathbf{Z} \longrightarrow f_d \longrightarrow \hat{\mathbf{S}}$$

$$\arg\min_{ heta_e, heta_d} \mathcal{L}(\mathbf{S},\hat{\mathbf{S}})$$

- To establish the framework, we need to define the following elements
 - Encoder
 - Decoder
 - Measure of similarity
 - Objective function

$$V \longrightarrow f_e \longrightarrow \mathbf{Z} \longrightarrow f_d \longrightarrow \hat{\mathbf{S}}$$

$$\arg\min_{ heta_e, heta_d} \mathcal{L}(\mathbf{S},\hat{\mathbf{S}})$$

- We rely on shallow embedding method to learn node representations.
- ❖ In this method, the encoder f_e is an embedding **look up** that only takes the node index i as input and returns an embedding $z_i \in \mathbb{R}^D$ for the node.
- \diamond Given node v_i

$$\boldsymbol{z}_i = f_e(v_i; \theta_e)$$

- We rely on shallow embedding method to learn node representations.
- ❖ In this method, the encoder f_e is an embedding **look up** that only takes the node index i as input and returns an embedding $z_i \in \mathbb{R}^D$ for the node.
- \diamond Given node v_i

$$\boldsymbol{z}_i = f_e(v_i; \theta_e)$$

Siven the set of graph nodes V, encoder f_e returns an embedding dictionary $\mathbf{Z} \in \mathbb{R}^{|V| \times D}$

$$\mathbf{Z} = f_e(V; \theta_e)$$

 \bullet Encoder f_e is a dictionary look up that given node index, returns

$$oldsymbol{z}_i = \mathbf{Z} e^{(i)}$$

where $e^{(i)} \in \{0,1\}^{|V|}$ is an indicator vector for node v_i .

$$\mathbf{Z}e^{(i)} =$$

 \bullet Encoder f_e is a dictionary look up that given node index, returns

$$oldsymbol{z}_i = \mathbf{Z} e^{(i)}$$

where $e^{(i)} \in \{0,1\}^{|V|}$ is an indicator vector for node v_i .

$$\mathbf{Z}e^{(i)} = egin{bmatrix} z_{11} & \cdots & z_{|V|1} \ dots & dots \ z_{1D} & dots & dots \ z_{|V|D} \end{bmatrix} egin{bmatrix} 0 \ dots \ 1 \ dots \ z_{|V|D} \end{bmatrix}$$

 \bullet Encoder f_e is a dictionary look up that given node index, returns

$$oldsymbol{z}_i = \mathbf{Z} e^{(i)}$$

where $e^{(i)} \in \{0,1\}^{|V|}$ is an indicator vector for node v_i .

$$\mathbf{Z}e^{(i)} = egin{bmatrix} z_{11} & \cdots & z_{|V|1} \ dots & dots \ z_{1D} \end{bmatrix} egin{bmatrix} z_{|V|1} \ dots \ z_{|V|D} \end{bmatrix} egin{bmatrix} 0 \ dots \ 1 \ dots \ z_{|D} \end{bmatrix} = egin{bmatrix} z_{i1} \ dots \ z_{iD} \end{bmatrix}$$

 \bullet Encoder f_e is a dictionary look up that given node index, returns

$$oldsymbol{z}_i = \mathbf{Z} e^{(i)}$$

where $e^{(i)} \in \{0,1\}^{|V|}$ is an indicator vector for node v_i .

$$\mathbf{Z}e^{(i)} = egin{bmatrix} z_{11} & \cdots & z_{|V|1} \ dots & dots \ z_{1D} \end{bmatrix} egin{bmatrix} z_{|V|1} \ dots \ z_{|V|D} \end{bmatrix} egin{bmatrix} 0 \ dots \ 1 \ dots \ z_{|D} \end{bmatrix} = egin{bmatrix} z_{i1} \ dots \ z_{iD} \end{bmatrix}$$

Therefore, embedding Z is learned as model parameter for the encoder

$$\mathbf{Z} = \theta_e$$

- This type of encoder does not use the local structure or neighborhood of the node to yield an embedding.
- Adding this elements leads to . . .

$$\mathbf{Z} = f_e\left(\mathbf{A}; \theta_e\right)$$

$$f_e: \mathbb{R}^{|V| \times |V|} \to \mathbb{R}^{|V| \times D}$$

- This type of encoder does not use the local structure or neighborhood of the node to yield an embedding.
- It also does not use the node features.
- Adding these elements leads to . . .

$$\mathbf{Z} = f_e(\mathbf{A}, \mathbf{X}; \theta_e)$$

$$f_e: \mathbb{R}^{|V| \times |V|} \times \mathbb{R}^{|V| \times F} \to \mathbb{R}^{|V| \times D}$$

- This type of encoder does not use the local structure or neighborhood of the node to yield an embedding.
- It also does not use the node features.
- Adding these elements leads to Graph Neural Network (GNN) architectures.

$$\mathbf{Z} = f_e(\mathbf{A}, \mathbf{X}; \theta_e)$$

$$f_e: \mathbb{R}^{|V| \times |V|} \times \mathbb{R}^{|V| \times F} \to \mathbb{R}^{|V| \times D}$$

- The goal of the encoder decoder framework is to reconstruct node's local structure and relationship to other nodes.
- This is done by reconstructing pairwise relationship of the nodes in the graph.

- The goal of the encoder decoder framework is to reconstruct node's local structure and relationship to other nodes.
- This is done by reconstructing pairwise relationship of the nodes in the graph.

- The goal of the encoder decoder framework is to reconstruct node's local structure and relationship to other nodes.
- This is done by reconstructing pairwise relationship of the nodes in the graph.
- Simplest approach would be to reconstruct the neighborhood.

* We can reconstruct that by finding the corresponding row of the adjacency matrix A_i for a node v_i .

Similarity Measure

- * We can reconstruct that by finding the corresponding row of the adjacency matrix A_i for a node v_i .
- Likewise, we can set a transformation of the adjacency matrix or any node-node similarity measure *S* discussed in the previous lectures as the framework's reconstruction goal.

- \clubsuit Decoder f_d reconstructs the desired similarity measure S for a neighborhood $N(v_i)$ of node v_i given its latent representation z_i .
- To reconstruct the matrix-based similarity measures, one popular choice for the decoder is to use the **inner product** of the embedding vectors of two nodes v_i and v_j .

- \clubsuit Decoder f_d reconstructs the desired similarity measure S for a neighborhood $N(v_i)$ of node v_i given its latent representation z_i .
- * To reconstruct the matrix-based similarity measures, one popular choice for the decoder is to use the **inner product** of the embedding vectors of two nodes v_i and v_j .
- ightharpoonup The decoder $f_d: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}^+$ uses inner product

$$f_d(oldsymbol{z}_i,oldsymbol{z}_j) = oldsymbol{z}_i^Toldsymbol{z}_j$$

to predict the node similarity \hat{S}_{ij} of nodes v_i and v_j .

Some methods rely on **distance** to quantify the closeness of the node embeddings.

- Some methods rely on **distance** to quantify the closeness of the node embeddings.
- ightharpoonup The decoder $f_d: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}^+$ uses a distance function l

$$f_d\left(oldsymbol{z}_i,oldsymbol{z}_j
ight) = l(oldsymbol{z}_i,oldsymbol{z}_j)$$

to measure closeness of nodes v_i and v_j .

* The distance between embedding vectors z_i and z_j is measured based on the nature of the **underlying embedding** space.

- Some methods rely on **distance** to quantify the closeness of the node embeddings.
- ightharpoonup The decoder $f_d: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}^+$ uses a distance function l

$$f_d\left(oldsymbol{z}_i,oldsymbol{z}_j
ight) = l(oldsymbol{z}_i,oldsymbol{z}_j)$$

to measure closeness of nodes v_i and v_j .

- * The distance between embedding vectors z_i and z_j is measured based on the nature of the **underlying embedding space**.
- For probabilistic similarity measures, where the similarity is in the form $p(v_j|v_i)$, the decoder should return a **probability** using functions like a softmax function.

Objective function

- The encoder-decoder framework aims to
 - \triangleright Learn embeddings **Z** of nodes *V* using the encoder f_e .
 - **Reconstruct** some user-defined notion of similarity S between nodes using the decoder f_d .

Objective function

- The encoder-decoder framework aims to
 - \triangleright **Learn** embeddings **Z** of nodes *V* using the encoder f_e .
 - **Reconstruct** some user-defined notion of similarity S between nodes using the decoder f_d .
- * The optimization objective **minimizes the discrepancy** between the reconstructed structure \widehat{S} and the similarity measure S over the set of edges E in the graph G.

Objective function

- The encoder-decoder framework aims to
 - \triangleright Learn embeddings **Z** of nodes *V* using the encoder f_e .
 - **Reconstruct** some user-defined notion of similarity S between nodes using the decoder f_d .
- The optimization objective **minimizes the discrepancy** between the reconstructed structure \widehat{S} and the similarity measure S over the set of edges E in the graph G.
- Mathematically put,

$$\mathcal{L}(\mathbf{S}, \hat{\mathbf{S}}) = \sum_{\varepsilon \in E} \ell(S_{ij}, f_d(v_i, v_j))$$

with $\ell: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.

Embedding Learning Methods

- Based on the choice of the objective function, decoder, and similarity, we can learn different node embeddings.
- Deterministic approaches to learn node embeddings are divided into following categories based on decoding:
 - Distance-based methods
 - Laplacian Eigenmaps
 - Multi-dimensional Scaling (MDS)
 - Non-Euclidean methods
 - Outer product methods
 - Graph Factorization
 - GraRep

- Laplacian Eigenmap or Spectral embedding is a classical approach to learn embeddings.
- This approach **minimizes the distance** between a data point with its neighbors in the embedding space.

- Laplacian Eigenmap or Spectral embedding is a classical approach to learn embeddings.
- This approach **minimizes the distance** between a data point with its neighbors in the embedding space.
- This objective function can be formulated as

$$\mathcal{L}(\mathbf{Z}) = \sum_{i} \sum_{j} A_{ij} \| \boldsymbol{z}_i - \boldsymbol{z}_j \|_2^2$$

Intuitively, when neighboring nodes v_i and v_j have embeddings z_i and z_j that are distant from each other, loss function **penalizes** the optimization algorithm

- In an encoder-decoder framework, we reformulate this as
 - Decoder

$$\hat{S}_{ij} = f_d(\boldsymbol{z}_i, \boldsymbol{z}_j) = \|\boldsymbol{z}_i - \boldsymbol{z}_j\|_2^2$$

Loss function

$$\mathcal{L}(\mathbf{A}, \hat{\mathbf{S}}) = \sum_{i} \sum_{j} A_{ij} \hat{S}_{ij}$$

 \diamond We can reformulate the decoder f_d as

$$egin{aligned} \left\|oldsymbol{z}_{i}-oldsymbol{z}_{j}
ight\|_{2}^{2} &= \left[\sqrt{\left(oldsymbol{z}_{i1}-oldsymbol{z}_{j1}
ight)^{2}+\cdots+\left(oldsymbol{z}_{in}-oldsymbol{z}_{jn}
ight)^{2}}
ight]^{2} \ &= oldsymbol{z}_{i1}^{2}+\cdots+oldsymbol{z}_{in}^{2}+oldsymbol{z}_{j1}^{2}+\cdots+oldsymbol{z}_{j1}^{2}+\cdots+oldsymbol{z}_{jn}^{2} \ &= \left\|oldsymbol{z}_{i1}
ight\|_{2}^{2}+\left\|oldsymbol{z}_{j}
ight\|_{2}^{2}-2oldsymbol{z}_{i}oldsymbol{z}_{j}^{T} \ &= \left\|oldsymbol{z}_{i1}
ight\|_{2}^{2}+\left\|oldsymbol{z}_{j}
ight\|_{2}^{2}-2oldsymbol{z}_{i}oldsymbol{z}_{j}^{T} \end{aligned}$$

Plugging this in the loss equation, we get

$$\begin{split} \mathcal{L}(\mathbf{A}, \hat{\mathbf{S}}) &= \sum_{i} \sum_{j} A_{ij} \left(\| \boldsymbol{z}_{i} \|_{2}^{2} + \| \boldsymbol{z}_{j} \|_{2}^{2} - 2 \boldsymbol{z}_{i} \boldsymbol{z}_{j}^{T} \right) \\ &= \sum_{i} \sum_{j} A_{ij} \left\| \boldsymbol{z}_{i} \right\|_{2}^{2} + \sum_{i} \sum_{j} A_{ij} \left\| \boldsymbol{z}_{j} \right\|_{2}^{2} - 2 \sum_{i} \sum_{j} A_{ij} \boldsymbol{z}_{i} \boldsymbol{z}_{j}^{T} \\ &= \sum_{i} d_{i} \left\| \boldsymbol{z}_{i} \right\|_{2}^{2} + \sum_{j} d_{j} \left\| \boldsymbol{z}_{j} \right\|_{2}^{2} - 2 \sum_{i} \sum_{j} A_{ij} \boldsymbol{z}_{i} \boldsymbol{z}_{j}^{T} \end{split}$$

Plugging this in the loss equation, we get

$$\mathcal{L}(\mathbf{A}, \hat{\mathbf{S}}) = \sum_{i} \sum_{j} A_{ij} \left(\|\mathbf{z}_{i}\|_{2}^{2} + \|\mathbf{z}_{j}\|_{2}^{2} - 2\mathbf{z}_{i}\mathbf{z}_{j}^{T} \right)$$

$$= \sum_{i} \sum_{j} A_{ij} \|\mathbf{z}_{i}\|_{2}^{2} + \sum_{i} \sum_{j} A_{ij} \|\mathbf{z}_{j}\|_{2}^{2} - 2\sum_{i} \sum_{j} A_{ij}\mathbf{z}_{i}\mathbf{z}_{j}^{T}$$

$$= \sum_{i} d_{i} \|\mathbf{z}_{i}\|_{2}^{2} + \sum_{j} d_{j} \|\mathbf{z}_{j}\|_{2}^{2} - 2\sum_{i} \sum_{j} A_{ij}\mathbf{z}_{i}\mathbf{z}_{j}^{T}$$

$$= 2\mathbf{Z}^{T}\mathbf{D}\mathbf{Z} - 2\mathbf{Z}^{T}\mathbf{A}\mathbf{Z}$$

$$= 2\mathbf{Z}^{T}(\mathbf{D} - \mathbf{A})\mathbf{Z}$$

Therefore

$$\mathcal{L}(\mathbf{Z}) = 2\mathbf{Z}^T \mathbf{L} \mathbf{Z}$$

Therefore, we rewrite the objective function as

$$\begin{array}{ccc}
& \mathbf{min} & \mathbf{Z}^T \mathbf{L} \mathbf{Z} \\
\mathbf{Z} & \\
\text{subject to} & \mathbf{Z}^T \mathbf{D} \overrightarrow{\mathbf{1}} = 0 \\
& \mathbf{Z}^T \mathbf{D} \mathbf{Z} = I
\end{array}$$

- The reformulated objective function shows that Laplacian Eigenmap build upon the spectral clustering ideas to construct node embeddings.
- Similar to the spectral clustering, the solution for $Z \subset \mathbb{R}^D$ is the last D eigenvectors with non-zero eigenvalues.

Therefore, we rewrite the objective function as

$$\begin{array}{ccc}
& \mathbf{min} & \mathbf{Z}^T \mathbf{L} \mathbf{Z} \\
\mathbf{Z} & \\
\text{subject to} & \mathbf{Z}^T \mathbf{D} \overrightarrow{\mathbf{1}} = 0 \\
& \mathbf{Z}^T \mathbf{D} \mathbf{Z} = I
\end{array}$$

- The reformulated objective function shows that Laplacian Eigenmap build upon the spectral clustering ideas to construct node embeddings.
- Similar to the spectral clustering, the solution for $\mathbf{Z} \subset \mathbb{R}^D$ is the last D eigenvectors with non-zero eigenvalues.
- While we used adjacency matrix as similarity for the derivation, we can use any similarity matrix that has properties of the Laplacian L.

- Another node embedding approach based upon classical manifold learning methods is MDS.
- In this approach, the distance between the learned embeddings z_i and z_j preserves the **dissimilarity** between the corresponding nodes v_i and v_j .
- The node-node dissimilarity measure l is user-defined

- Another node embedding approach based upon classical manifold learning methods is MDS.
- In this approach, the distance between the learned embeddings z_i and z_j preserves the **dissimilarity** between the corresponding nodes v_i and v_j .
- The node-node dissimilarity measure l is user-defined
 - Shortest path between two nodes.

- Another node embedding approach based upon classical manifold learning methods is MDS.
- In this approach, the distance between the learned embeddings z_i and z_j preserves the **dissimilarity** between the corresponding nodes v_i and v_j .
- The node-node dissimilarity measure l is user-defined
 - Shortest path between two nodes.

- In the encoder-decoder framework, the MDS approach is formulated as
 - The loss function L is defined as

$$\mathcal{L}(\mathbf{S}, \hat{\mathbf{S}}) = \|\mathbf{S} - \hat{\mathbf{S}}\|_F^2$$

 \triangleright The decoder f_d is formulated as

$$\hat{S}_{ij} = f_d\left(oldsymbol{z}_i, oldsymbol{z}_j
ight) = \left\|oldsymbol{z}_i - oldsymbol{z}_j
ight\|_2$$

The distance matrix S can be any method that reflects dissimilarity of a pair of nodes on the graph

- In the previous method, the underlying feature representation of the graph is assumed to lie on a Euclidean space.
- That means we use L2 norm to measure the **distance** between tow points on the feature space.
- Not all data can best be represented on a Euclidean feature space.

- In the previous method, the underlying feature representation of the graph is assumed to lie on a Euclidean space.
- That means we use L2 norm to measure the **distance** between tow points on the feature space.
- Not all data can best be represented on a Euclidean feature space.
- ❖ For instance, feature representation for hierarchical graphs are ideally represented on a hyperbolic space, which has a hierarchical structure

- To that end, we need to use a hyperbolic distance, also known as Poincaré distance.
- In the encoder-decoder framework, the MDS approach is formulated as

- To that end, we need to use a hyperbolic distance, also known as Poincaré distance.
- In the encoder-decoder framework, the MDS approach is formulated as
 - \triangleright The decoder f_d is formulated as

$$\hat{S}_{ij} = f_d(\boldsymbol{z}_i, \boldsymbol{z}_j) = l_{\text{Poincar\'e}} \ (\boldsymbol{z}_i, \boldsymbol{z}_j) = \operatorname{arcosh} \left(1 + 2 \frac{\|\boldsymbol{z}_i - \boldsymbol{z}_j\|_2^2}{\left(1 - \|\boldsymbol{z}_i\|_2^2\right) \left(1 - \|\boldsymbol{z}_j\|_2^2\right)} \right)$$

The loss function L is defined as

$$\mathcal{L}(\mathbf{A}, \hat{\mathbf{A}}) = \sum_{i} \sum_{j} A_{ij} \log \frac{\exp(-\hat{A}_{ij})}{\sum_{k|A_{ik}=0} \exp(-\hat{A}_{ik})}$$

- More recent approaches instead use outer product-based decoder models.
- The idea is that the dot product of **two feature** vectors z_i and z_i measures the **similarity** of corresponding nodes v_i and v_i .

- More recent approaches instead use outer product-based decoder models.
- The idea is that the dot product of **two feature** vectors z_i and z_i measures the **similarity** of corresponding nodes v_i and v_j .
- In this approach, we define the decoder as the inner product of the pair of embeddings

$$\hat{S}_{ij} = f_d(\boldsymbol{z}_i, \boldsymbol{z}_j) = \boldsymbol{z}_i^T \boldsymbol{z}_j$$

In matrix notation, this is written as

$$\hat{\mathbf{S}} = \mathbf{Z}\mathbf{Z}^T$$

- More recent approaches instead use outer product-based decoder models.
- The idea is that the dot product of **two feature** vectors z_i and z_i measures the **similarity** of corresponding nodes v_i and v_j .
- In this approach, we define the decoder as the inner product of the pair of embeddings

$$\hat{S}_{ij} = f_d(\boldsymbol{z}_i, \boldsymbol{z}_j) = \boldsymbol{z}_i^T \boldsymbol{z}_j$$

In matrix notation, this is written as

$$\hat{\mathbf{S}} = \mathbf{Z}\mathbf{Z}^T$$

The loss function is defined as

$$\mathcal{L}\left(S_{ij}, \hat{S}_{ij}\right) = \sum_{(v_i, v_j) \in E} \left(S_{ij} - \hat{S}_{ij}\right)^2$$

The loss function

$$\mathcal{L}\left(S_{ij}, \hat{S}_{ij}\right) = \sum_{(v_i, v_j) \in E} \left(S_{ij} - \hat{S}_{ij}\right)^2$$
$$= \sum_{i} \sum_{j} A_{ij} \left(S_{ij} - \hat{S}_{ij}\right)^2$$

The loss function

$$\mathcal{L}\left(S_{ij}, \hat{S}_{ij}\right) = \sum_{(v_i, v_j) \in E} \left(S_{ij} - \hat{S}_{ij}\right)^2$$
$$= \sum_{i} \sum_{j} A_{ij} \left(S_{ij} - \hat{S}_{ij}\right)^2$$

In matrix notation, the loss function can be expressed as

$$\mathcal{L}(\mathbf{S}, \hat{\mathbf{S}}) = \left\|\mathbf{A}\odot(\mathbf{S} - \hat{\mathbf{S}})
ight\|_F^2$$

The loss function

$$\mathcal{L}\left(S_{ij}, \hat{S}_{ij}\right) = \sum_{(v_i, v_j) \in E} \left(S_{ij} - \hat{S}_{ij}\right)^2$$
$$= \sum_{i} \sum_{j} A_{ij} \left(S_{ij} - \hat{S}_{ij}\right)^2$$

In matrix notation, the loss function can be expressed as

$$\mathcal{L}(\mathbf{S}, \hat{\mathbf{S}}) = \left\| \mathbf{A} \odot (\mathbf{S} - \hat{\mathbf{S}})
ight\|_F^2$$

Therefore, the solution to this minimization problem can be found through a matrix factorization approach.

$$\hat{\mathbf{S}} = \mathbf{Z}\mathbf{Z}^T pprox \mathbf{S}$$

We can find the optimal Z through matrix factorization approaches such as SVD.

- One downside of the approached discussed so far is that they reconstruct a symmetric similarity measure.
- This limits use of these approaches in the directed graphs.

- One downside of the approached discussed so far is that they reconstruct a symmetric similarity measure.
- This limits use of these approaches in the directed graphs.
- The similarity measure used by GraRep model resolves this issue.
- * This approach defines the similarity measure between to nodes as probability value of transition from v_i to v_j .

$$P_{ij} = \frac{A_{ij}}{d_i}$$

In matrix notation

$$\mathbf{P} = \mathbf{D}^{-1} \mathbf{A}$$

* We can leverage this to capture k —step transition probability from v_i to v_j as

$$\mathbf{P}^k = \mathbf{D}^{-k} \mathbf{A}^k$$

ightharpoonup
igh

* We can leverage this to capture k —step transition probability from v_i to v_j as

$$\mathbf{P}^k = \mathbf{D}^{-k} \mathbf{A}^k$$

- ightharpoonup By using P^k as the reconstruction goal, the learned embedding will capture k-step relations between the two nodes.
- GraRep defines K different reconstruction goals P^k with k = 1, ..., K to learn embeddings capturing different k-step transition probability

$$\mathcal{L}_k(\mathbf{P}, \hat{\mathbf{P}}) = \left\| \mathbf{P}^k - \hat{\mathbf{P}}^{(k)}
ight\|_F^2$$

* We can leverage this to capture k —step transition probability from v_i to v_j as

$$\mathbf{P}^k = \mathbf{D}^{-k} \mathbf{A}^k$$

- ightharpoonup By using P^k as the reconstruction goal, the learned embedding will capture k-step relations between the two nodes.
- GraRep defines K different reconstruction goals P^k with k = 1, ..., K to learn embeddings capturing different k-step transition probability

$$\mathcal{L}_k(\mathbf{P}, \hat{\mathbf{P}}) = \left\| \mathbf{P}^k - \hat{\mathbf{P}}^{(k)}
ight\|_F^2$$

Using matrix factorization, minimizing £ has the solution

$$\hat{ extbf{P}}^{(k)} = extbf{Z}_s extbf{Z}_t^T pprox extbf{P}^k$$

 \diamond Given the asymmetric **reconstruction goal** P^k , the decoder is the outer product of two embedding matrices.

$$\hat{\mathbf{P}}^{(k)} = \mathbf{Z}_s \mathbf{Z}_t^T$$

 \diamond Given the asymmetric **reconstruction goal** P^k , the decoder is the outer product of two embedding matrices.

$$\hat{\mathbf{P}}^{(k)} = \mathbf{Z}_s \mathbf{Z}_t^T$$

For a pair of embeddings, decoder is defined as

$$f_d(\boldsymbol{z}_{i, \text{Source}}^{(k)}, \boldsymbol{z}_{j, \text{Target}}^{(k)}) = \boldsymbol{z}_{i, \text{Source}}^{(k), T} \boldsymbol{z}_{j, \text{Target}}^{(k)}$$

Where the embedding is defined separately for source node and target node:

- The first embedding $z_{i,source}$ corresponds to the **source** node v_i .
- ightharpoonup the second one $z_{j,target}$ correspond to the **destination** node v_{j} .

Minimizing each loss function

$$\mathcal{L}_k(\mathbf{P}, \hat{\mathbf{P}}) = \left\|\mathbf{P}^k - \hat{\mathbf{P}}^{(k)}
ight\|_F^2$$

Learns embeddings that capture k —step transition probabilities.

Minimizing each loss function

$$\mathcal{L}_k(\mathbf{P}, \hat{\mathbf{P}}) = \left\|\mathbf{P}^k - \hat{\mathbf{P}}^{(k)}
ight\|_F^2$$

Learns embeddings that capture k —step transition probabilities.

• GraRep solves this problem for K matrices P^k , where k = 1, ..., K.

Minimizing each loss function

$$\mathcal{L}_k(\mathbf{P}, \hat{\mathbf{P}}) = \left\|\mathbf{P}^k - \hat{\mathbf{P}}^{(k)}
ight\|_F^2$$

Learns embeddings that capture k —step transition probabilities.

- GraRep solves this problem for K matrices P^k , where k = 1, ..., K.
- ❖ Then, the node embeddings for source and target nodes are constructed by concatenating the embeddings learned from each k −step transition matrix.

$$\mathbf{Z}_{\mathrm{source}} = \left[\mathbf{Z}_{\mathrm{source}}^{(1)} \mid \dots \mid \mathbf{Z}_{\mathrm{source}}^{(k)}\right]$$

$$\mathbf{Z}_{\mathrm{target}} = \left[\mathbf{Z}_{\mathrm{target}}^{(1)} \mid \ldots \mid \mathbf{Z}_{\mathrm{target}}^{(k)} \right]$$

Summary

- Learning Node embedding
- Encoder-Decoder framework
- Encoder
- Similarity Measure
- Decoder
- Reconstruction Objective
- Deterministic approaches to learning node embeddings

Summary

- Deterministic approaches to learning node embeddings
 - Distance-based methods
 - Laplacian Eigenmaps
 - Multi-dimensional Scaling (MDS)
 - Non-Euclidean methods
 - Outer product methods
 - Graph Factorization
 - GraRep

