Clustering in Graphs

ACMS 80770: Deep Learning with Graphs

Instructor: Navid Shervani-Tabar

Department of Applied and Comp Math and Stats

* A graph partitioning problem divides the graph into K clusters \mathcal{A}_i and \mathcal{A}_j such that $\mathcal{A}_i \cup \mathcal{A}_j = V$ and $\mathcal{A}_i \cap \mathcal{A}_j = \emptyset$ if $i \neq j$.

- A graph partitioning problem divides the graph into K clusters \mathcal{A}_i and \mathcal{A}_j such that $\mathcal{A}_i \cup \mathcal{A}_j = V$ and $\mathcal{A}_i \cap \mathcal{A}_j = \emptyset$ if $i \neq j$.
- Zoltan, by Sandia National Lab, is a library for load balancing in parallel computing for unstructured and adaptive mesh.

Adaptive Wavelet Collocation Method

- A graph partitioning problem divides the graph into K clusters \mathcal{A}_i and \mathcal{A}_j such that $\mathcal{A}_i \cup \mathcal{A}_j = V$ and $\mathcal{A}_i \cap \mathcal{A}_j = \emptyset$ if $i \neq j$.
- Zoltan, by Sandia National Lab, is a library for load balancing in parallel computing for unstructured and adaptive mesh.
- Zoltan performs graph and hypergraph partitioning to distribute computational load.
 - Graph: data objects are nodes and pairwise data dependency are edges.
 - Hypergraph: data objects are nodes and dependencies among set of data objects are hyper-edges.

Node cut set: For any pair of nodes A and B in the graph, a node cut set is a set of nodes that if removed (along with their incident edges) will disconnect A and B.

Node cut set: For any pair of nodes A and B in the graph, a node cut set is a set of nodes that if removed (along with their incident edges) will disconnect A and B.

 $\triangleright \{v_2, v_3\}$

Node cut set: For any pair of nodes A and B in the graph, a node cut set is a set of nodes that if removed (along with their incident edges) will disconnect A and B.

- $\triangleright \{v_2, v_3\}$
- Edge cut set: The set of edges that if removed, it will disconnect specified nodes A and B.

Node cut set: For any pair of nodes A and B in the graph, a node cut set is a set of nodes that if removed (along with their incident edges) will disconnect A and B.

- $\triangleright \{v_2, v_3\}$
- Edge cut set: The set of edges that if removed, it will disconnect specified nodes A and B.

 $\triangleright \{(v_1, v_2), (v_3, v_4)\}$

Cut sets are not unique.

Cut sets are not unique.

 $ightharpoonup \{v_2, v_5\}$

Cut sets are not unique.

 $\triangleright \{v_2, v_5\}, \{v_1\}$

Minimum Cut Set

Cut sets are not unique.

- $\triangleright \{v_2, v_5\}, \{v_1\}$
- Minimum cut set: is the minimal set of nodes whose removal will disconnect a pair of nodes A and B in the graph.
- $\triangleright \{v_1\}$

Cut Size

- One graph partitioning strategy is to divide the graph into K clusters such that the edge cut size is minimized.
- Minimize data passing across 2 processing units.
- We define a cut size as

$$R(\mathcal{A}_1, \dots, \mathcal{A}_K) = \frac{1}{2} \sum_{k=1}^K \left| \left\{ (v_i, v_j) \in E \mid v_i \in \mathcal{A}_k, v_j \in \bar{\mathcal{A}}_k \right\} \right|$$
$$= \frac{1}{2} \sum_{k=1}^K \sum_{v_i \in \mathcal{A}_k} \sum_{v_i \in \bar{\mathcal{A}}_k} A_{ij}$$

Consider partitioning a graph into 2 clusters, such that

$$s_i = \begin{cases} 1 & v_i \in \mathcal{A}_1 \\ -1 & v_i \in \mathcal{A}_2 \end{cases}$$

Cut Size

Then the indicator function

$$\frac{1}{2} (1 - s_i s_j) = \begin{cases} 0 & v_i, v_j \in \mathcal{A}_1 \text{ or } v_i, v_j \in \mathcal{A}_2 \\ 1 & v_i \in \mathcal{A}_1, v_j \in \mathcal{A}_2 \text{ or } v_j \in \mathcal{A}_1, v_i \in \mathcal{A}_2 \end{cases}$$

shows if 2 nodes belong to different clusters

We rewrite the cut size as

$$R(\mathcal{A}_1, \mathcal{A}_2) = \frac{1}{2} \sum_{k=1}^{2} \sum_{v_i \in \mathcal{A}_k} \sum_{v_j \in \overline{\mathcal{A}}_k} A_{ij}$$
$$= \frac{1}{4} \sum_{v_i \in V} \sum_{v_j \in V} A_{ij} (1 - s_i s_j)$$

 \diamond The clustering problem boils down to finding vector s.

A graph partitioning problem can be formulated as minimizing the edge cut set, AKA mincut problem

$$\min_{\mathcal{A}_k \subset V} R(\mathcal{A}_1, \dots, \mathcal{A}_K)$$

This formulation often does not yield optimal clusters

A graph partitioning problem can be formulated as minimizing the edge cut set, AKA mincut problem

$$\min_{\mathcal{A}_k \subset V} R(\mathcal{A}_1, \dots, \mathcal{A}_K)$$

This formulation often does not yield optimal clusters

A graph partitioning problem can be formulated as minimizing the edge cut set, AKA mincut problem

$$\min_{\mathcal{A}_k \subset V} R(\mathcal{A}_1, \dots, \mathcal{A}_K)$$

This formulation often does not yield optimal clusters

A graph partitioning problem can be formulated as minimizing the edge cut set, AKA mincut problem

$$\min_{\mathcal{A}_k \subset V} R(\mathcal{A}_1, \dots, \mathcal{A}_K)$$

This formulation often does not yield optimal clusters

 $R(\mathcal{A}_1,\ldots,\mathcal{A}_5)=20$

A graph partitioning problem can be formulated as minimizing the edge cut set, AKA mincut problem

$$\min_{\mathcal{A}_k \subset V} R(\mathcal{A}_1, \dots, \mathcal{A}_K)$$

This formulation often does not yield optimal clusters

 $R(\mathcal{A}_1,\ldots,\mathcal{A}_5)=16$

A graph partitioning problem can be formulated as minimizing the edge cut set, AKA mincut problem

$$\min_{\mathcal{A}_k \subset V} R(\mathcal{A}_1, \dots, \mathcal{A}_K)$$

- This formulation often does not yield optimal clusters.
- Minimizing this objective results in clusters of size 1.

$$R(\mathcal{A}_1,\ldots,\mathcal{A}_5)=16$$

Ratio Cut

- One strategy is to promote larger clusters while minimizing the cut size.
- This can be done by penalizing small partition sizes.
- Ratio cut size objective function minimizes

$$R^{\text{RatioCut}}(\mathcal{A}_1, \dots, \mathcal{A}_K) = \frac{1}{2} \sum_{k=1}^K \frac{\left| (u, v) \in \mathcal{E} : u \in \mathcal{A}_k, v \in \overline{\mathcal{A}}_k \right|}{|\mathcal{A}_k|}$$

where $|\mathcal{A}_k|$ is the number of nodes in of each partition \mathcal{A}_k .

Ratio cut measures the size of a partition by its number of nodes.

Normalized Cut

Volume of a subgraph G' = (V', E') is the total number of edges incident to nodes v_k of that subgraph.

$$vol(G') = \sum_{v_i \in V'} d_i$$

Normalized Cut (NCut), alternatively, penalizes the objective function for smaller cluster volumes

$$R^{\text{NCut}}\left(\mathcal{A}_{1}, \dots, \mathcal{A}_{K}\right) = \frac{1}{2} \sum_{k=1}^{K} \frac{\left|\left(v_{i}, v_{j}\right) \in E : v_{i} \in \mathcal{A}_{k}, v_{j} \in \bar{\mathcal{A}}_{k}\right|}{\text{vol}\left(\mathcal{A}_{k}\right)}$$

- NCut measures size of a subset by the number of its edges.
- * Minimizing the NCut objective function promotes equal number of edges incident to the nodes of each partition A_k .

- Laplacian is a widely used representation for graphs.
- Laplacian of an undirected graph is a |V|×|V| symmetric matrix defined as

$$L_{ij} = \begin{cases} d_j & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and } (v_i, v_j) \in \varepsilon \\ 0 & \text{otherwise} \end{cases}$$

We can represent this using index notation as

$$L_{ij} = -A_{ij} + d_i \delta_{ij}$$

- Laplacian is a widely used representation for graphs.
- Laplacian of an undirected graph is a |V|×|V| symmetric matrix defined as

$$L_{ij} = \begin{cases} d_j & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and } (v_i, v_j) \in \varepsilon \\ 0 & \text{otherwise} \end{cases}$$

We can represent this using index notation as

$$L_{ij} = -A_{ij} + d_i \delta_{ij}$$

In matrix notation

It is only suitable for undirected graphs.

Rows of Laplacian matrix sum to zero

$$\sum_{j} L_{ij} = \sum_{j} -A_{ij} + d_{i}\delta_{ij}$$
$$= -\sum_{j} A_{ij} + \sum_{j} d_{i}\delta_{ij}$$
$$= -d_{i} + d_{i} = 0$$

Rows of Laplacian matrix sum to zero

$$\sum_{j} L_{ij} = \sum_{j} -A_{ij} + d_{i}\delta_{ij}$$

$$= -\sum_{j} A_{ij} + \sum_{j} d_{i}\delta_{ij}$$

$$= -d_{i} + d_{i} = 0$$

All eigenvalues of L are non-negative

$$\lambda = \mathbf{v}^T \mathbf{L} \mathbf{v} = \sum_{i} \sum_{j} v_i L_{ij} v_j$$

$$= \sum_{i} \sum_{j} (-A_{ij} + d_i \delta_{ij}) v_i v_j$$

$$= -\sum_{i} \sum_{j} A_{ij} v_i v_j + \sum_{i} \sum_{j} d_i \delta_{ij} v_i v_j$$

Then,

$$\lambda = -\sum_{i} \sum_{j} A_{ij} v_{i} v_{j} + \frac{1}{2} \sum_{i} \sum_{j} d_{i} \delta_{ij} v_{i} v_{j} + \frac{1}{2} \sum_{j} \sum_{i} d_{j} \delta_{ji} v_{j} v_{i}$$

$$= -\sum_{i} \sum_{j} A_{ij} v_{i} v_{j} + \frac{1}{2} \sum_{i} d_{i} v_{i}^{2} + \frac{1}{2} \sum_{j} d_{j} v_{j}^{2}$$

$$= -\sum_{i} \sum_{j} A_{ij} v_{i} v_{j} + \frac{1}{2} \sum_{i} \sum_{j} A_{ij} v_{i}^{2} + \frac{1}{2} \sum_{i} \sum_{j} A_{ij} v_{j}^{2}$$

$$= \frac{1}{2} \sum_{i} \sum_{j} A_{ij} \left(-2v_{i}v_{j} + v_{i}^{2} + v_{j}^{2} \right)$$

$$= \frac{1}{2} \sum_{i} \sum_{j} A_{ij} \left(v_{i} - v_{j} \right)^{2} \geqslant 0$$

❖ L has at least one 0 eigenvalue.

$$\lambda = 0 = \mathbf{v}^T \mathbf{L} \mathbf{v} = \frac{1}{2} \sum_{i} \sum_{j} A_{ij} (v_i - v_j)^2$$

* This indicates that either $A_{ij} = 0$ or $A_{ij} = 1$ and $v_i = v_j$.

L has at least one 0 eigenvalue.

$$\lambda = 0 = \mathbf{v}^T \mathbf{L} \mathbf{v} = \frac{1}{2} \sum_{i} \sum_{j} A_{ij} (v_i - v_j)^2$$

* This indicates that either $A_{ij} = 0$ or $A_{ij} = 1$ and $v_i = v_j$.

- * Therefore, eigenvalue $\lambda = 0$ has a corresponding \mathbf{v} with equal elements.
- Alternatively, since all elements of L sum to 1, we have

$$\overrightarrow{\mathbf{L}} \overrightarrow{\mathbf{1}} = 0$$

For a graph G = (V, E), an incidence matrix is a $|E| \times |V|$ matrix describing the membership of a node in edges of the graph

$$B_{ij} = \begin{cases} 1 & (v_i, v_j) \in E \\ 0 & (v_i, v_j) \notin E \end{cases}$$

For a graph G = (V, E), an incidence matrix is a $|E| \times |V|$ matrix describing the membership of a node in edges of the graph

$$B_{ij} = \begin{cases} 1 & (v_i, v_j) \in E \\ 0 & (v_i, v_j) \notin E \end{cases}$$

For a graph G = (V, E), an incidence matrix is a $|E| \times |V|$ matrix describing the membership of a node in edges of the graph

$$B_{ij} = \begin{cases} 1 & (v_i, v_j) \in E \\ 0 & (v_i, v_j) \notin E \end{cases}$$

	v_1	v_2	v_3	v_4	v_5
(v_1,v_2)	1	1			
(v_2,v_3)					
(v_1,v_3)					
(v_3,v_4)					
(v_3,v_5)					

For a graph G = (V, E), an incidence matrix is a $|E| \times |V|$ matrix describing the membership of a node in edges of the graph

$$B_{ij} = \begin{cases} 1 & (v_i, v_j) \in E \\ 0 & (v_i, v_j) \notin E \end{cases}$$

	v_1	v_2	v_3	v_4	v_5
(v_1, v_2)	1	1			
(v_2,v_3)		1	1		
(v_1,v_3)	1		1		
(v_3,v_4)			1	1	
(v_3,v_5)			1		1

Perform projection in bipartite graphs.

- An oriented incidence matrix for undirected graph is defined by any orientation of the graph.
- \bullet For $\varepsilon_{ij} \in E$, we use the convention

$$B_{ij} = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \text{ and } i < j, \\ -1 & \text{if } (v_i, v_j) \in E \text{ and } i > j, \\ 0 & \text{otherwise.} \end{cases}$$

- An oriented incidence matrix for undirected graph is defined by any orientation of the graph.
- For $\varepsilon_{ij} \in E$, we use the convention

$$B_{ij} = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \text{ and } i < j, \\ -1 & \text{if } (v_i, v_j) \in E \text{ and } i > j, \\ 0 & \text{otherwise.} \end{cases}$$

	v_1	v_2	v_3	v_4	v_5
(v_1,v_2)	1	-1			
(v_2,v_3)					
(v_1,v_3)					
(v_3,v_4)					
(v_3,v_5)					

- An oriented incidence matrix for undirected graph is defined by any orientation of the graph.
- For $\varepsilon_{ij} \in E$, we use the convention

$$B_{ij} = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \text{ and } i < j, \\ -1 & \text{if } (v_i, v_j) \in E \text{ and } i > j, \\ 0 & \text{otherwise.} \end{cases}$$

	v_1	v_2	v_3	v_4	v_5
(v_1,v_2)	1	-1			
(v_2,v_3)		1	-1		
(v_1,v_3)	1		-1		
(v_3,v_4)			1	-1	
(v_3,v_5)			1		-1

Laplacian

For a multivariate function $f: \mathbb{R}^n \to \mathbb{R}$, the Laplacian operator is defined as the divergence of the gradient of f

$$\Delta f(\mathbf{x}) = \nabla \cdot \nabla f(\mathbf{x})$$

❖ Gradient of f, ∇f : $\mathbb{R}^n \to \mathbb{R}^n$ is defined as the vector

$$\nabla f(\mathbf{x}) = \left[\frac{\partial}{\partial x_1} f(\mathbf{x}), \dots, \frac{\partial}{\partial x_n} f(\mathbf{x}) \right]$$

Gradient represents the rate and direction of the steepest ascent of function f at x.

Laplacian

Divergence of a vector field is the outward flux of the vector field at point x.

$$\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x_1} \mathbf{F} + \dots + \frac{\partial}{\partial x_n} \mathbf{F}$$

Laplacian is then derived as

$$\nabla \cdot \nabla f(\mathbf{x}) = \frac{\partial^2}{\partial x_1^2} f(\mathbf{x}) + \dots + \frac{\partial^2}{\partial x_n^2} f(\mathbf{x})$$

A real function f on graph is defined as a map from nodes to real number. This is discrete analogue of a scalar field.

\diamond Gradient operator on graph $\nabla: V \to E$ is defined as

$$[\nabla \boldsymbol{f}]_{ij} = f_i - f_j$$

\cdot\cdot Given incident matrix **B**, we can compute gradient as $\nabla f = \mathbf{B}f$

$$\begin{bmatrix} 1 & -1 & \cdot & \cdot & \cdot \\ \cdot & 1 & -1 & \cdot & \cdot \\ 1 & \cdot & -1 & \cdot & \cdot \\ \cdot & \cdot & 1 & -1 & \cdot \\ \cdot & \cdot & 1 & \cdot & -1 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \end{bmatrix} = \begin{bmatrix} f_1 - f_2 \\ f_2 - f_3 \\ f_1 - f_3 \\ f_3 - f_4 \\ f_3 - f_5 \end{bmatrix}$$

ightharpoonup Divergence operator on a graph div: E o V sums over values associated with the edges of the graph.

$$\operatorname{div}(\mathbf{g})_i = \sum_{v_j \in N(v_i)} g_{ij}$$

Given incident matrix B, we can compute divergence as

$$\operatorname{div} \mathbf{g} = \mathbf{B}^T \mathbf{g}$$

$$\begin{bmatrix} 1 & \cdot & 1 & \cdot & \cdot \\ -1 & 1 & \cdot & \cdot & \cdot \\ \cdot & -1 & -1 & 1 & 1 \\ \cdot & \cdot & \cdot & -1 & \cdot \\ \cdot & \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} g_{(1,2)} \\ g_{(2,3)} \\ g_{(1,3)} \\ g_{(3,4)} \\ g_{(3,5)} \end{bmatrix} = \begin{bmatrix} g_{(1,2)} + g_{(1,3)} \\ -g_{(1,2)} + g_{(2,3)} \\ -g_{(1,2)} + g_{(2,3)} \\ -g_{(1,2)} + g_{(2,3)} \\ -g_{(3,4)} \\ -g_{(3,5)} \end{bmatrix}$$

ightharpoonup Divergence operator on a graph div: E o V sums over values associated with the edges of the graph.

$$\operatorname{div}(\mathbf{g})_i = \sum_{v_j \in N(v_i)} g_{ij}$$

Given incident matrix B, we can compute divergence as

$$\operatorname{div} \mathbf{g} = \mathbf{B}^T \mathbf{g}$$

\Delta Laplacian operator on graph $\Delta: V \to V$ is defined as

$$\mathbf{B}^T \mathbf{B} f = \mathbf{L} \mathbf{f}$$

- To prevent too much effect of nodes with large degree, we can use normalized Laplacian matrices.
- There are two variants of normalized graph Laplacian:
- Symmetric normalized Laplacian

$$\hat{\mathbf{L}}_{Sym} = \mathbf{D}^{-\frac{1}{2}} \mathbf{L} \mathbf{D}^{-\frac{1}{2}}$$

Random-Walk normalized Laplacian

$$\hat{\mathbf{L}}_{RW} = \mathbf{D}^{-1}\mathbf{L}$$

Disconnected graphs have an adjacency matrix with nonzero square blocks on the diagonal and zeros outside of these blocks.
Block diagonal matrix

 \boldsymbol{A} :

 $\begin{bmatrix} [0\,1\,0\,0\,1\,0\,0\,0\,0] \\ [1\,0\,1\,1\,1\,0\,0\,0\,0] \\ [0\,1\,0\,1\,1\,0\,0\,0\,0] \\ [0\,1\,1\,0\,1\,0\,0\,0\,0] \\ [1\,1\,1\,1\,0\,0\,0\,0\,0] \\ [0\,0\,0\,0\,0\,1\,0\,1] \\ [0\,0\,0\,0\,0\,0\,1\,0\,1] \\ [0\,0\,0\,0\,0\,0\,1\,1\,0] \\ [0\,0\,0\,0\,0\,0\,1\,1\,0] \\ \end{bmatrix}$

- Since L = D A, L also has a block diagonal form in disconnected graphs.
- Number of the zero eigenvalues of Laplacian represents the number of components in the graph.

Consider the cut size

$$R = \frac{1}{4} \sum_{i \in V} \sum_{j \in V} A_{ij} (1 - s_i s_j)$$
$$= \frac{1}{4} \sum_{i \in V} \sum_{j \in V} [A_{ij} - A_{ij} s_i s_j]$$

Since

$$s_i = \begin{cases} 1 & v_i \in \mathcal{A}_1 \\ -1 & v_i \in \mathcal{A}_2 \end{cases}$$

therefore, $s_i^2 = 1$

$$\sum_{i \in V} \sum_{j \in V} A_{ij} = \sum_{i \in V} \sum_{j \in V} A_{ij} s_i^2$$
$$= \sum_{i \in V} d_i s_i^2 = \sum_{i \in V} \sum_{j \in V} d_i s_i s_j \delta_{ij}$$

Plugging in

$$R = \frac{1}{4} \sum_{i \in V} \sum_{j \in V} d_i s_i s_j \delta_{ij} - A_{ij} s_i s_j$$
$$= \frac{1}{4} \sum_{i \in V} \sum_{j \in V} (d_i s_{ij} - A_{ij}) s_i s_j$$

Plugging in

$$R = \frac{1}{4} \sum_{i \in V} \sum_{j \in V} d_i s_i s_j \delta_{ij} - A_{ij} s_i s_j$$

$$= \frac{1}{4} \sum_{i \in V} \sum_{j \in V} (d_i s_{ij} - A_{ij}) s_i s_j = \frac{1}{4} \sum_{i \in V} \sum_{j \in V} L_{ij} s_i s_j$$

$$\longrightarrow \text{Laplacian}$$

In matrix notation, the cut size is

$$R = \frac{1}{4}\mathbf{s}^T\mathbf{L}\mathbf{s}$$
 Graph structure \longleftarrow Division in graph

We can express the graph partitioning problem as finding partitioning s that minimizes R.

Approximation to ratio cut using spectral methods

$$s_i = \begin{cases} +\sqrt{\frac{|\bar{\mathcal{A}}|}{|\mathcal{A}|}} & \text{if} \quad v_i \in \mathcal{A} \\ -\sqrt{\frac{|\mathcal{A}|}{|\bar{\mathcal{A}}|}} & \text{if} \quad v_i \in \bar{\mathcal{A}} \end{cases}$$

$$\mathbf{s}^{T}\mathbf{L}\mathbf{s} = \frac{1}{2} \sum_{i} \sum_{j} A_{ij} (s_{i} - s_{j})^{2}$$

$$= \sum_{v_{i} \in \mathcal{A}} \sum_{v_{j} \in \bar{\mathcal{A}}} A_{ij} (s_{i} - s_{j})^{2}$$

$$= \sum_{v_{i} \in \mathcal{A}} \sum_{v_{j} \in \bar{\mathcal{A}}} A_{ij} \left(\sqrt{\frac{|\bar{\mathcal{A}}|}{|\mathcal{A}|}} + \sqrt{\frac{|\mathcal{A}|}{|\bar{\mathcal{A}}|}} \right)^{2}$$

$$= \left(\frac{|\bar{\mathcal{A}}|}{|\mathcal{A}|} + \frac{|\mathcal{A}|}{|\bar{\mathcal{A}}|} + 2 \right) \sum_{v_{i} \in \mathcal{A}} \sum_{v_{j} \in \bar{\mathcal{A}}} A_{ij}$$

$$\mathbf{s}^{T}\mathbf{L}\mathbf{s} = \left(\frac{|\bar{\mathcal{A}}|}{|\mathcal{A}|} + \frac{|\mathcal{A}|}{|\mathcal{A}|} + \frac{|\bar{\mathcal{A}}|}{|\bar{\mathcal{A}}|} + \frac{|\bar{\mathcal{A}}|}{|\bar{\mathcal{A}}|}\right) \sum_{v_{i} \in \mathcal{A}} \sum_{v_{j} \in \bar{\mathcal{A}}} A_{ij}$$

$$= \left(\frac{|\bar{\mathcal{A}}| + |\mathcal{A}|}{|\mathcal{A}|} + \frac{|\mathcal{A}| + |\bar{\mathcal{A}}|}{|\bar{\mathcal{A}}|}\right) \sum_{v_{i} \in \mathcal{A}} \sum_{v_{j} \in \bar{\mathcal{A}}} A_{ij}$$

$$= |V| \left(\frac{1}{|\mathcal{A}|} + \frac{1}{|\bar{\mathcal{A}}|}\right) \sum_{v_{i} \in \mathcal{A}} \sum_{v_{j} \in \bar{\mathcal{A}}} A_{ij}$$

$$= |V| \frac{1}{2} \sum_{k=1}^{2} \sum_{v_{i} \in \mathcal{A}_{k}} \sum_{v_{j} \in \bar{\mathcal{A}}_{k}} \frac{A_{ij}}{|\mathcal{A}_{k}|}$$

$$= |V| R^{\text{RatioCut}}(\mathcal{A}, \bar{\mathcal{A}})$$

$$R^{\text{RatioCut}}(\mathcal{A}, \bar{\mathcal{A}}) = \frac{1}{|V|} \mathbf{s}^T \mathbf{L} \mathbf{s}$$

Note that

$$\sum_{v_i \in V} s_i = \sum_{v_i \in \mathcal{A}} \sqrt{\frac{|\bar{\mathcal{A}}|}{|\mathcal{A}|}} - \sum_{v_i \in \bar{\mathcal{A}}} \sqrt{\frac{|\mathcal{A}|}{|\bar{\mathcal{A}}|}}$$
$$= |\mathcal{A}| \sqrt{\frac{|\bar{\mathcal{A}}|}{|\mathcal{A}|}} - |\bar{\mathcal{A}}| \sqrt{\frac{|\mathcal{A}|}{|\bar{\mathcal{A}}|}} = \sqrt{|\mathcal{A}||\bar{\mathcal{A}}|} - \sqrt{|\bar{\mathcal{A}}||\mathcal{A}|} = 0$$

- \clubsuit Therefore $s \perp \vec{1}$.
- Also,

$$\|\mathbf{s}\|^{2} = \sum_{v_{i} \in \mathcal{A}} \left(\sqrt{\frac{|\bar{\mathcal{A}}|}{|\mathcal{A}|}} \right)^{2} + \sum_{v_{i} \in \bar{\mathcal{A}}} \left(\sqrt{\frac{|\mathcal{A}|}{|\bar{\mathcal{A}}|}} \right)^{2}$$
$$= |\mathcal{A}| \frac{|\bar{\mathcal{A}}|}{|\mathcal{A}|} + |\bar{\mathcal{A}}| \frac{|\mathcal{A}|}{|\bar{\mathcal{A}}|} = |V|$$

•

$$\min_{\mathcal{A} \subset V} \mathbf{s}^T \mathbf{L} \mathbf{s}$$
 s.t. $\mathbf{s} \perp \overrightarrow{\mathbf{1}}$ and $\|\mathbf{s}\|^2 = |V|$

K-means Clustering

- Feature-based clustering approach.
- ❖ It clusters data points into *K* clusters by minimizing their feature vector's distance from cluster mean.

$$rg\min_{k} \left\|oldsymbol{z}_{n} - oldsymbol{\mu}_{k}
ight\|_{2}^{2}$$

* Mean μ_k is computed at each iteration based on the points assigned to the cluster k at that iteration

$$oldsymbol{\mu}_k = rac{1}{|\mathcal{A}_k|} \sum_{oldsymbol{z}_n \in \mathcal{A}_k} oldsymbol{z}_n$$

In matrix notation,

Feature Matrix

- K-means clustering can cluster nodes of a graph based on feature vectors built upon eigen-decomposition of L.
 - \triangleright Find eigen-decomposition of Laplacian $LV = \Lambda V$.

- K-means clustering can cluster nodes of a graph based on feature vectors built upon eigen-decomposition of L.
 - \triangleright Find eigen-decomposition of Laplacian $LV = \Lambda V$.
 - \triangleright Construct feature matrix Z by separating the eigenvectors corresponding to the K smallest eigenvalues $V_{|V|-K:|V|}$.

- K-means clustering can cluster nodes of a graph based on feature vectors built upon eigen-decomposition of L.
 - \triangleright Find eigen-decomposition of Laplacian $LV = \Lambda V$.
 - \triangleright Construct feature matrix Z by separating the eigenvectors corresponding to the K smallest eigenvalues $V_{|V|-K:|V|}$.

- K-means clustering can cluster nodes of a graph based on feature vectors built upon eigen-decomposition of L.
 - \triangleright Find eigen-decomposition of Laplacian $LV = \Lambda V$.
 - \triangleright Construct feature matrix Z by separating the eigenvectors corresponding to the K smallest eigenvalues $V_{|V|-K:|V|}$.
 - \triangleright i-th row of **Z** represents the embedding z_i for node v_i .

- K-means clustering can cluster nodes of a graph based on feature vectors built upon eigen-decomposition of L.
 - \triangleright Find eigen-decomposition of Laplacian $LV = \Lambda V$.
 - \triangleright Construct feature matrix Z by separating the eigenvectors corresponding to the K smallest eigenvalues $V_{|V|-K:|V|}$.
 - \triangleright i-th row of **Z** represents the embedding z_i for node v_i .
 - \triangleright Run K-means clustering on features z_i , where $v_i \in V$.

Summary

- Graph Partitioning
- Cut Set
- Ratio Cut
- Normalized Cut
- Graph Laplacian
 - Properties
 - Intuition
- Incidence matrix
- Spectral Partitioning
- K-means clustering
- Generalized Spectral Clustering

