Clustering in Graphs

ACMS 80770: Deep Learning with Graphs
Instructor: Navid Shervani-Tabar
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Graph Partitioning

“+ A graph partitioning problem divides the graph into K clusters
A; and Aj suchthat A, UA; =V and A, NAj =@ if i #].
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Graph Partitioning

“+ A graph partitioning problem divides the graph into K clusters
A; and Aj suchthat A, UA; =V and A, NAj =@ if i #].

» Zoltan, by Sandia National Lab, is a library for load balancing
in parallel computing for unstructured and adaptive mesh.

Adaptive Wavelet
Collocation Method
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Graph Partitioning

“+ A graph partitioning problem divides the graph into K clusters
A; and Aj suchthat A, UA; =V and A, NAj =@ if i #].

» Zoltan, by Sandia National Lab, is a library for load balancing
in parallel computing for unstructured and adaptive mesh.

“» Zoltan performs graph and hypergraph partitioning to distribute
computational load.

» Graph: data objects are nodes and pairwise data
dependency are edges.

» Hypergraph: data objects are nodes and dependencies
among set of data objects are hyper-edges.
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Cut Set

“* Node cut set: For any pair of nodes A and B in the graph, a
node cut set is a set of nodes that if removed (along with their
incident edges) will disconnect A and B.
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Cut Set

“* Node cut set: For any pair of nodes A and B in the graph, a
node cut set is a set of nodes that if removed (along with their
incident edges) will disconnect A and B.
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Cut Set

“* Node cut set: For any pair of nodes A and B in the graph, a
node cut set is a set of nodes that if removed (along with their
incident edges) will disconnect A and B.

U1 V2
A -
-

U3 () B

> {UZI v3}

< Edge cut set: The set of edges that if removed, it will

disconnect specified nodes A and B.
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Cut Set

“* Node cut set: For any pair of nodes A and B in the graph, a
node cut set is a set of nodes that if removed (along with their
incident edges) will disconnect A and B.

U1 V2
A -
-

U3 () B

> {UZI v3}

< Edge cut set: The set of edges that if removed, it will

disconnect specified nodes A and B.

U1 U
A o 2

®
> {(v1,v3), (v3,14)} U3 V4
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Cut Set

% Cut sets are not unique.

A (%] (%)

(W] Us
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Cut Set

% Cut sets are not unique.

A (%] (%)
U4 Us
U3 B
> {UZ ) U5}
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Cut Set

% Cut sets are not unique.

> {v2,vs}, {v1}
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Minimum Cut Set

* Cut sets are not unique.

A (%] (%)

(W] Us

> {v2,vs}, {v1}

“* Minimum cut set: is the minimal set of nodes whose removal
will disconnect a pair of nodes A and B in the graph.

> {vy}
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Cut Size

% One graph partitioning strategy is to divide the graph into K
clusters such that the edge cut size is minimized.

» Minimize data passing across 2 processing units.
“* We define a cut size as

R(Ai,...,Ag) = [{(vi,v5) € B | v; € A, v; € Ay}

DN | =
i

X
I
—_

> 2 A

v; €A v E.Ak

NIH
&MN

% Consider partitioning a graph into 2 clusters, such that

G — 1 v; € A
’ -1 v; € Ay
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Cut Size

*** Then the indicator function

1(1—35'): 0 w;,v; € Ay or v;,v; € Ay
2 v 1 UiEAl,UjEAQOI’UjEAl,UiEAQ

shows if 2 nodes belong to different clusters

» We rewrite the cut size as

R(ArAz) = Z 2. 2 Ay

k lv, € AL UJE.Ak

:i DD Ay (1-sisy)

v, €V (% ev

“+ The clustering problem boils down to finding vector s.
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Graph Partitioning

“* A graph partitioning problem can be formulated as minimizing
the edge cut set, AKA mincut problem

Jnin, R(A4,..., Ak)

“+ This formulation often does not yield optimal clusters
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Graph Partitioning

“* A graph partitioning problem can be formulated as minimizing
the edge cut set, AKA mincut problem

Jnin, R(A4,..., Ak)

“+ This formulation often does not yield optimal clusters

> /» 4-Clique
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Graph Partitioning

“* A graph partitioning problem can be formulated as minimizing
the edge cut set, AKA mincut problem

Jnin, R(A4,..., Ak)

“+ This formulation often does not yield optimal clusters
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Graph Partitioning

“* A graph partitioning problem can be formulated as minimizing
the edge cut set, AKA mincut problem

Jnin, R(A4,..., Ak)

“+ This formulation often does not yield optimal clusters
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Graph Partitioning

“* A graph partitioning problem can be formulated as minimizing
the edge cut set, AKA mincut problem

Jnin, R(A4,..., Ak)

“+ This formulation often does not yield optimal clusters
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Graph Partitioning

“* A graph partitioning problem can be formulated as minimizing
the edge cut set, AKA mincut problem

Jnin, R(A4,..., Ak)

“+ This formulation often does not yield optimal clusters.

“ Minimizing this objective results in clusters of size 1.

'/A§~éf\

N

R(AL, ..., As) = 20
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Ratio Cut

% One strategy is to promote larger clusters while minimizing the
cut size.

“* This can be done by penalizing small partition sizes.

% Ratio cut size objective function minimizes

Z\uv )EE ue Ay, v e A

RRatioCut .A,
A A

where |A| is the number of nodes in of each partition A;.

“* Ratio cut measures the size of a partition by its number of
nodes.
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Normalized Cut

% Volume of a subgraph ¢’ = (V’, E’) is the total number of edges
incident to nodes v;, of that subgraph.

vol (G') = ) d;

v, eV’
“* Normalized Cut (NCut), alternatively, penalizes the objective
function for smaller cluster volumes

EEZUiE.Ak,’Uj EA[A
vol (Ag)

RNCut (Al AK) _ li ‘('Ui;’Uj)
s 2k:1

“* NCut measures size of a subset by the number of its edges.

< Minimizing the NCut objective function promotes equal number
of edges incident to the nodes of each partition A,,.
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Graph Laplacian

“+ Laplacian is a widely used representation for graphs.

% Laplacian of an undirected graph is a |V |x|V| symmetric matrix

defined as
d; if1=7
Lij = —1 if ¢ #] and (UZ',’UJ') ce
0 otherwise

“* We can represent this using index notation as
Lij = —Aij + didij
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Graph Laplacian

“+ Laplacian is a widely used representation for graphs.

% Laplacian of an undirected graph is a |V |x|V| symmetric matrix

defined as
d; if1=7
Lij = —1 if ¢ #] and (UZ',’UJ') ce
0 otherwise

“* We can represent this using index notation as
Lij = —Aij + didij
< In matrix notation
L=D-A

Degree matrix 4—/ \> Adjacency matrix

“ It is only suitable for undirected graphs.
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Graph Laplacian

“* Rows of Laplacian matrix sum to zero
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ZLU = Z _Aij -+ d@(sm
J J
== Aij+ ) didy;
J J

= —di+d; =0
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Graph Laplacian

“* Rows of Laplacian matrix sum to zero

Z Lij = Z —Aij -+ dzdm
J J
== Aij+ ) didy;
J J

= —di+d; =0

% All eigenvalues of L are non-negative

J UNIVERSITY OF
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A= VTLV = Z ZUiLijUj
v
=¥ > (—Aij + didij) viv;
i
= — Z Z Aijvivj + Z Z diéijvivj
g P07
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Graph Laplacian

% Then,
A= — Z ZAz'jvz"Uj + % szi(sijvivj + % szjéjij

i o I

== > A+ % > dvl + % > djvs
i i J

— _ ZZAij’Uin + % ZZAij’UZ'Q + % ZZA’L'J"UJQ'
i tJ v

:%ZZAM (=2viv; + 07 + vj)
(|

:%ZZ% (vi = ;)" >0
i
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Graph Laplacian

“* L has at least one 0 eigenvalue.

A=0=v Lv= %ZZA” (Ui—vj)Q
(Y

< This indicates that either A;; = 0 or 4;; =1 and v; = v;.

UNIVERSITY OF

NOTRE DAME ACMS 80770: Deep Learning with Graphs, Navid Shervani-Tabar

28



Graph Laplacian

“* L has at least one 0 eigenvalue.
1
0 =TT — A — )2
A=0=v LV—§ZZAZJ(UZ V;)
¢ J

< This indicates that either A;; = 0 or 4;; =1 and v; = v;.

“* Therefore, eigenvalue A = 0 has a corresponding v with equal
elements.

< Alternatively, since all elements of L sum to 1, we have

—
L1 =0
J UNIVERSITY OF
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Incidence Matrix

% Foragraph G = (V,E), an incidence matrix is a |E|Xx|V| matrix
describing the membership of a node in edges of the graph

B, = {1 (vi,vj) € B

0 (v’i y Uyj ) §é E
U2
U1 V3
U4
Us
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Incidence Matrix

% Foragraph G = (V,E), an incidence matrix is a |E|Xx|V| matrix
describing the membership of a node in edges of the graph

1 (vi,v5) €F
Bij = ) ¢ E
0 (UHUJ) §é

V1 V2 V3 Vg4 Vs

(O] V3

S
)—\

S
W

(v1,02)
(v2,v3)
(v1,v3)
(vs, v4)
(vs,v5) V4

UNIVERSITY OF

NOTRE DAME ACMS 80770: Deep Learning with Graphs, Navid Shervani-Tabar

31



Incidence Matrix

% Foragraph G = (V,E), an incidence matrix is a |E|Xx|V| matrix
describing the membership of a node in edges of the graph

1 (vi,v5) €F
Bij = ) ¢ E
0 (UHUJ) §é

V1 V2 V3 Vg4 Vs

111

(O] V3

S
)—\

S
W

(v1,02)
(v2,v3)
(v1,v3)
(vs, v4)
(vs,v5) V4

UNIVERSITY OF

NOTRE DAME ACMS 80770: Deep Learning with Graphs, Navid Shervani-Tabar

32



Incidence Matrix

% Foragraph G = (V,E), an incidence matrix is a |E|Xx|V| matrix
describing the membership of a node in edges of the graph

1 (vi,v5) €F
Bij = ) ¢ E
0 (UHUJ) §é

V1 V2 V3 Vg4 Vs

(vi,v2) [ 1|1 2
(v2,v3) 1|1
U1 V3
(vi,v3) | 1 1
(v3, va) 11
(U37 U5) 1 1 Vs U4
» Perform projection in bipartite graphs.
UNIVERSITY OF
NOTRE DAME ACMS 80770: Deep Learning with Graphs, Navid Shervani-Tabar
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Incidence Matrix

<+ An oriented incidence matrix for undirected graph is defined by
any orientation of the graph.

s For ¢;; € E, we use the convention
ij

2

1 if (vi,v;) € E and @ < 7,
Bij =< —1 if (’UZ',U]') c F and 7 > 7,

0 otherwise.

\

V1 V2 V3 Vg4 Vs

S
’_l
S
W

Uy

(01, 02)
(v2, v3)
(01, v3)
(v3,v4)
(v3,5)

V3.,V
3, Ub Us
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Incidence Matrix

<+ An oriented incidence matrix for undirected graph is defined by
any orientation of the graph.

s For ¢;; € E, we use the convention
ij

2

1 if (vi,v;) € E and @ < 7,
Bij =< —1 if (’Ui,?)j) c F and 7 > 7,

0 otherwise.

\

V1 V2 V3 Vg4 Vs

1(-1

S
’_l
S
W

(v1,v2)
(v2,v3)
(v1,v3)
(vs, v4)
(vs, vs) V4

Us

UNIVERSITY OF

NOTRE DAME ACMS 80770: Deep Learning with Graphs, Navid Shervani-Tabar



Incidence Matrix

<+ An oriented incidence matrix for undirected graph is defined by
any orientation of the graph.

s For ¢;; € E, we use the convention
ij

2

1 if (vi,v;) € E and @ < 7,
Bij =< —1 if (’Ui,?)j) c F and 7 > 7,

0 otherwise.

v
(v1,v2) | 1 | -1 2
(UQ,Ug) 1 -1
U1 V3
(vi,v3) | 1 -1
(vs, v4) 1]-1
(vs, v5) 1 -1 Vs U4
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Laplacian

“ For a multivariate function f: R™ —» R, the Laplacian operator is
defined as the divergence of the gradient of f

Af(x) = V- Vf(x)

% Gradient of f, Vf : R® - R" is defined as the vector

0

Vi) = | (X),--.,%f(X)

“ Gradient represents the rate and direction of the steepest
ascent of function f at x.

\\\\\\\\\\\\
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Laplacian

“* Divergence of a vector field is the outward flux of the vector
field at point x.

0 0
F=—F —F
v 6261 + +8£Un

“+ Laplacian is then derived as

0* 0*
VVIK) = gm0+t 55 ()

n

6l . NNV T T T 777 7.
NNNANNANN Vv vt PP
R SQQ\\\ RRRRRRR ;//;;2,
ANAN X . Pt / /7 v
NN R A
LR NN \:{§§ ;;;; R oo
NN N O~ -
N ;
N RN R R R R R et
B NN i . ——
v TToonmnenoidgLitzzzzo TIZ
X o{ZI I IzZZzIoll JliiTZZool Iz v . v X
f( ) cocoTZZzZzohNTiiITmTiosIo f( )
D 2772 R B NN
-2 - - N o~ .« - -
SoIC TN s
A I B I L T NN NN
L A T B LB B N I3
"/5/// . | o \\\t\“
7 E AR R RN
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e SYII I T TV VNNV
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Graph Laplacian

< Areal function f on graph is defined as a map from nodes to
real number. This is discrete analogue of a scalar field.

f=1h fo f3 fa [

“ Gradient operator on graph V: V — E is defined as

% Given incident matrix B, we can compute gradient as Vf = Bf

UNIVERSITY OF

NOTRE DAME

1

1

—1
1

—1
—1
1
1

f:V—-~R

}T

VFli = fi — fi

—1

—1

f1
f2
f3
Ja

WE

fi— fo
fo—f3
fi—f3
f3— fa
| f3—f5 |
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Graph Laplacian

“* Divergence operator on a graph div: E = V sums over values
associated with the edges of the graph.

div(g Z 8ii

v; EN (v;)

“ Given incident matrix B, we can compute divergence as

div g = BTg
- 1 - 9(1,2) 9(1,2) T 9(1,3)
-1 1 : : ’ 9(2,3) —9(1,2) T 9(2,3)
- -1 -1 1 1 9ga3) | = | —9@3) — 91,3 + 93,9 + 935
. . —1 . g(374) _9(3,4)
) - L [9ss | L —9(3,5) .
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Graph Laplacian

“* Divergence operator on a graph div: E = V sums over values
associated with the edges of the graph.

div(g); = Z Sij

v; EN (v;)

“ Given incident matrix B, we can compute divergence as
divg =B'g

“+ Laplacian operator on graph A:V — V is defined as
B'Bf =Lf

ot UNIVERSITY OF
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Graph Laplacian

“* To prevent too much effect of nodes with large degree, we can
use normalized Laplacian matrices.

“* There are two variants of normalized graph Laplacian:

» Symmetric normalized Laplacian
~ _1 _1
Lsym =D 2LD 2
» Random-Walk normalized Laplacian

Lry =D 'L

ot UNIVERSITY OF
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Spectral Partitioning

“* Disconnected graphs have an adjacency matrix with nonzero
square blocks on the diagonal and zeros outside of these

blocks. /v Block diagonal matrix

[[010010000]

[101110000]
[010110000]
[011010000]

A 111100000
[000000100]
[000001011]
[000000101]
[000000110]]

% Since L = D — A, L also has a block diagonal form in
disconnected graphs.

“* Number of the zero eigenvalues of Laplacian represents the
number of components in the graph.

ot UNIVERSITY OF
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Spectral Partitioning

s+ Consider the cut size

+* Since

RZ%ZZAij(l_SiSj)

icV jev
= % DD Ay — Ayjsisg]

eV jev

G — 1 UQ:E.A]_
’ —1 ?JiE.AQ

therefore, s? = 1

UNIVERSITY OF

NOTRE DAME

22 Ay =) Ay

eV gjeVv eV jev
_ d.s? = d:5:5:05::
- iS; — 13253 1)
i€V ieV jev
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Spectral Partitioning

% Plugging in

UNIVERSITY OF

NOTRE DAME

1
R = Z Z Z diSZ‘Sj(sij — AijSiSj

eV jeVv

i€V jeV
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Spectral Partitioning

< Plugging in
1
R = 1 Z Z d;is;i$j0i5 — AijsiS;

eV jev

1 1

=7 Z Z (disij — Aij) sisj = 4 Z Z Lijsis;
icV jeV \f\+ i€V jEV
Laplacian

+* In matrix notation, the cut size is

1
R = —s'Ls

j \
Graph structure Division in graph

“* We can express the graph partitioning problem as finding
partitioning s that minimizes R.

E‘ UNIVERSITY OF
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Spectral Partitioning

“» Approximation to ratio cut using spectral methods

UNIVERSITY OF

NOTRE DAME

% if v,ed

Si — _
—\/% if UZ'E.A

STLS = % Z ZAZJ (Si — Sj)2
U
= > > Aiylsi—s)

vi €A v; E/T

SER- b

v €A V; cA
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Spectral Partitioning

UNIVERSITY OF
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Al AL AL A

s'Ls = (— + — + Ajs
AT AT AT A 2, 2 A
A

vi€Ay;ed
1+ 14 |A|+\A\)
= -+ — A’L
(T POPIEL
:’V‘( |A!)Z 2 Ai
vicAv;eA

MYY >

k=1v,€Ak v;e Ay

— ’V|RRatIOCUt(A, A)

|«4k:|

: — 1
RR&thCUt(A) .A) mSTLS
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Spectral Partitioning

+* Note that
D si= ) Z_

v; EV v, EA

| Al
= | Al — AW T A =/ |AllA] = /| AllA] =0

< Therefore s 1L 1.

< Also, — 2 ’
”S”QZU%< %) + ZA( %)
— A }j{ A ;j} 4
- mins’Ls st. s1 1 and Is||? = V]

ACV
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K-means Clustering

“+ Feature-based clustering approach.

“ It clusters data points into K clusters by minimizing their
feature vector’s distance from cluster mean.

. 2
argmin |2, — pu |

< Mean u; is computed at each iteration based on the points
assigned to the cluster k at that iteration

Cluster

< In matrix notation, / Assignment Matrix
2

min ( 7 — SM” H
J F\»
Feature Matrix Cluster Means
1~ UNIVERSITY OF
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Generalized Spectral Clustering

% K-means clustering can cluster nodes of a graph based on
feature vectors built upon eigen-decomposition of L.

» Find eigen-decomposition of Laplacian LV = AV.

J UNIVERSITY OF
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Generalized Spectral Clustering

% K-means clustering can cluster nodes of a graph based on
feature vectors built upon eigen-decomposition of L.

» Find eigen-decomposition of Laplacian LV = AV.

» Construct feature matrix Z by separating the eigenvectors
corresponding to the K smallest eigenvalues Vy|_g.y|-
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Generalized Spectral Clustering

% K-means clustering can cluster nodes of a graph based on
feature vectors built upon eigen-decomposition of L.

» Find eigen-decomposition of Laplacian LV = AV.

» Construct feature matrix Z by separating the eigenvectors
corresponding to the K smallest eigenvalues Vy|_g.y|-
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Generalized Spectral Clustering

% K-means clustering can cluster nodes of a graph based on
feature vectors built upon eigen-decomposition of L.

» Find eigen-decomposition of Laplacian LV = AV.

» Construct feature matrix Z by separating the eigenvectors
corresponding to the K smallest eigenvalues Vy|_g.y|-

» iI-th row of Z represents the embedding z; for node v;.

VIV|-K+1 \ / A\

Z;, —»>

/A

UNIVERSITY OF
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Generalized Spectral Clustering

% K-means clustering can cluster nodes of a graph based on
feature vectors built upon eigen-decomposition of L.

» Find eigen-decomposition of Laplacian LV = AV.

» Construct feature matrix Z by separating the eigenvectors
corresponding to the K smallest eigenvalues Vy|_g.y|-

» iI-th row of Z represents the embedding z; for node v;.

» Run K-means clustering on features z;, where v; € V.

Z;, —»>
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Summary

< Graph Partitioning
< Cut Set
“* Ratio Cut
“* Normalized Cut
“» Graph Laplacian

* Properties

* Intuition
“* Incidence matrix
“* Spectral Partitioning
“* K-means clustering
“* Generalized Spectral Clustering
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