Random Graphs

ACMS 80770: Deep Learning with Graphs

Instructor: Navid Shervani-Tabar

Department of Applied and Comp Math and Stats

Intro

- So far in this course we have discussed representation learning from graphs.
- In this problem we construct embedding vectors from graph (and nodes and edges alike) to be used for inference in different problems.

- In this part of the course, we look at the graph generation task.
- In graph generation, a deep generative model takes an embedding vector as input and returns a graph.
- In principle this task is inverse of the graph representation learning.

- In this part of the course, we look at the graph generation task.
- In graph generation, a deep generative model takes an embedding vector as input and returns a graph.
- In principle this task is inverse of the graph representation learning.

- In this part of the course, we look at the graph generation task.
- In graph generation, a deep generative model takes an embedding vector as input and returns a graph.
- In principle this task is inverse of the graph representation learning.

- In this part of the course, we look at the graph generation task.
- In graph generation, a deep generative model takes an embedding vector as input and returns a graph.
- In principle this task is inverse of the graph representation learning.

However, before discussing deep graph generative models, we will look at the characteristics of the real-world graphs.

- Graphs are constructed from seemingly simple components
 - 1. Nodes
 - 2. Edges
- But the main question is how to place these edges to recreate the complexity of the real-world graphs.

- Graphs are constructed from seemingly simple components
 - 1. Nodes
 - 2. Edges
- But the main question is how to place these edges to recreate the complexity of the real-world graphs.
- Looking at the real-world graphs, the edges may appear to be randomly connecting pairs of nodes.
 - Internet,
 - social network.

Network Characteristics

- To verify this impression, we assume that edges are distributed randomly throughout the graph.
- Then, we inspect if randomness can explain these characteristics of the real-world graphs.

Network Characteristics

- To verify this impression, we assume that edges are distributed randomly throughout the graph.
- Then, we inspect if randomness can explain these characteristics of the real-world graphs.
- To address this, we first ask what properties characterize the structure of the real-world graphs.
- Important characteristics that affect the behavior of the graph include:
 - Connectedness
 - Path length
 - Degree distribution
 - Clustering coefficient

- Most real-world graphs are constructed of
 - A giant component that connects most of the nodes in the graph.
 - A few small components.

- Most real-world graphs are constructed of
 - A giant component that connects most of the nodes in the graph.
 - > A few small components.

- Most real-world graphs are constructed of
 - A giant component that connects most of the nodes in the graph.
 - A few small components.
- Actors' network is a graph consisting of nodes that represent actors and edges connecting them based on the appearance of two actors in a film together.
 - Actors Network consists of 449913 nodes.
 - The largest component of two actors Network consists of 440971 nodes.
 - This makes for 98% of the graph!

- Some real-world graphs, however, only consists of one component.
- This may be dictated by the nature of the data or by the measurement approach used.

- Some real-world graphs, however, only consists of one component.
- This may be dictated by the nature of the data or by the measurement approach used.
 - > Internet:
 - Internet is a communication Network whose underlying nature is to provide connection between all its entities
 - Therefore, disconnected components do not have a use.
 - Hence, the largest component of the internet is the graph itself.

- Some real-world graphs, however, only consists of one component.
- This may be dictated by the nature of the data or by the measurement approach used.

> Web:

- The structure of the web is mapped using web crawlers.
- If we use a single crawler to map the web, it only visits the web pages that are linked by other web pages.
- Therefore, the measurement approach dictates that the whole network has only one big giant component.

Small-world effect is a phenomenon that states for most realworld graphs the typical distance between the pairs of nodes is short.

- Small-world effect is a phenomenon that states for most realworld graphs the typical distance between the pairs of nodes is short.
- \diamond Let d_{ij} represent the **distance** between nodes v_i and v_j .
- **Then, the mean distance** between v_i and any node $v_i \in V$ is

$$\ell_i = \frac{1}{|V|} \sum_{i} d_{ij}$$

- Small-world effect is a phenomenon that states for most realworld graphs the typical distance between the pairs of nodes is short.
- \diamond Let d_{ij} represent the **distance** between nodes v_i and v_j .
- **Then, the mean distance** between v_i and any node $v_i \in V$ is

$$\ell_i = \frac{1}{|V|} \sum_{i} d_{ij}$$

* Thus, the mean distance between any two nodes $v_i, v_j \in V$ in the graph is

$$\ell = \frac{1}{|V|} \sum_{i} \ell_{i}$$

$$= \frac{1}{|V|^{2}} \sum_{i} \sum_{j} d_{ij}$$

* However, d_{ij} is **not defined** for nodes v_i and v_j that do **not** belong to the **same component**.

- * However, d_{ij} is **not defined** for nodes v_i and v_j that do **not** belong to the **same component**.
- ♣ Hence, we reformulate \(\ell \) as

$$\ell = \frac{\sum_{m} \sum_{ij \in V_m} d_{ij}}{\sum_{m} |V_m|^2}$$

where \mathcal{A}_m represents the component m in the graph with $|V_m|$ indicating the number of the nodes in that cluster.

- * However, d_{ij} is **not defined** for nodes v_i and v_j that do **not** belong to the **same component**.
- ♣ Hence, we reformulate \(\ell \) as

$$\ell = \frac{\sum_{m} \sum_{ij \in V_m} d_{ij}}{\sum_{m} |V_m|^2}$$

where \mathcal{A}_m represents the component m in the graph with $|V_m|$ indicating the number of the nodes in that cluster.

Looking at the real-world graphs, for graphs with sizes of order of millions of nodes, this measure is typically less than 10.

Diameter

- Diameter of a graph is the longest, finite distance between any two nodes in the graph.
- One may suggest to inspect the diameter of the graph instead of looking at the average distance.

Diameter

- Diameter of a graph is the longest, finite distance between any two nodes in the graph.
- One may suggest to inspect the diameter of the graph instead of looking at the average distance.
- There are, however, two downsides to use of this measure to study real-world graphs:
 - It only measures the **extreme end** of the distribution of the distances in the graph.
 - This measure could substantially change by a single modification to the graph.

- Degree distribution is one of the most fundamental properties of the graph structure.
- \diamond Let p_k indicate the fraction of nodes in the graph with degree k.
 - Example:

- Degree distribution is one of the most fundamental properties of the graph structure.
- \bullet Let p_k indicate the fraction of nodes in the graph with degree k.
 - > Example:

$$p_0 = \frac{1}{10}$$

- Degree distribution is one of the most fundamental properties of the graph structure.
- \bullet Let p_k indicate the fraction of nodes in the graph with degree k.
 - Example:

$$p_0 = \frac{1}{10}, \quad p_1 = \frac{2}{10}$$

- Degree distribution is one of the most fundamental properties of the graph structure.
- \bullet Let p_k indicate the fraction of nodes in the graph with degree k.
 - > Example:

$$p_0 = \frac{1}{10}, \quad p_1 = \frac{2}{10}, \quad p_2 = \frac{4}{10}$$

- Degree distribution is one of the most fundamental properties of the graph structure.
- \bullet Let p_k indicate the fraction of nodes in the graph with degree k.
 - > Example:

$$p_0 = \frac{1}{10}, \quad p_1 = \frac{2}{10}, \quad p_2 = \frac{4}{10}, \quad p_3 = \frac{2}{10}$$

- Degree distribution is one of the most fundamental properties of the graph structure.
- \bullet Let p_k indicate the fraction of nodes in the graph with degree k.
 - > Example:

$$p_0 = \frac{1}{10}, \quad p_1 = \frac{2}{10}, \quad p_2 = \frac{4}{10}, \quad p_3 = \frac{2}{10}, \quad p_4 = \frac{1}{10}$$

- Degree distribution is one of the most fundamental properties of the graph structure.
- \diamond Let p_k indicate the fraction of nodes in the graph with degree k.
 - Example:

$$p_0 = \frac{1}{10}$$
, $p_1 = \frac{2}{10}$, $p_2 = \frac{4}{10}$, $p_3 = \frac{2}{10}$, $p_4 = \frac{1}{10}$

- p_k represents the **degree distribution** of the network.
- \bullet In other words, p_k represents the probability of a randomly chosen node v_i having degree k.

The degree distribution for most real-world examples have a heavy tail.

- The degree distribution for most real-world examples have a heavy tail.
- That is, the probability of having highly connected nodes is non-zero.
- These nodes with unusually high degree are referred to as hubs.

- The degree distribution for most real-world examples have a heavy tail.
- That is, the probability of having highly connected nodes is non-zero.
- These nodes with unusually high degree are referred to as hubs.
- Meanwhile, most nodes have a very low degree.

- The degree distribution for most real-world examples have a heavy tail.
- That is, the probability of having highly connected nodes is non-zero.
- These nodes with unusually high degree are referred to as hubs.
- Meanwhile, most nodes have a very low degree.

When this degree distribution is plotted on a log-scale, it roughly follows a straight line.

Power-law distribution

- When this degree distribution is plotted on a log-scale, it roughly follows a straight line.
- We can formulate this interpretation as

$$\ln p_k = -\alpha \ln k + C$$

where α is the slope of the line.

Power-law distribution

- When this degree distribution is plotted on a log-scale, it roughly follows a straight line.
- We can formulate this interpretation as

$$\ln p_k = -\alpha \ln k + C$$

where α is the slope of the line.

Taking the exponential of both sides, we have

$$p_k \propto k^{-\alpha}$$

This distribution is referred to as power-law distribution.

Scale-free Graphs

- Power-law distribution is characterized by its heavy tail.
- Power-law is also known as pareto distribution.
- Graphs that follow a power-law degree distribution are known as scale-free networks.
- These graphs consist of:
 - A core, that contains most of the nodes in the graph.
 - Longer streams that are attached to the core.

Clustering Coefficients

Earlier in the course, we defined the clustering coefficient of a node as the density of the triangles in the vicinity of the node.

Alternatively, one can interpret the clustering coefficient as the average probability of two neighbors of a node being connected.

Graph generation

- Now we look at the graph generation approaches.
- To motivate the **deep graph generative** models, we first look at the **traditional** graph generation algorithms.
- These methods try to construct non-trivial graphs that have the desirable properties of the real-world graphs.

Graph generation

- Now we look at the graph generation approaches.
- To motivate the **deep graph generative** models, we first look at the **traditional** graph generation algorithms.
- These methods try to construct non-trivial graphs that have the desirable properties of the real-world graphs.
- We refer to the construction algorithm as the generative process.
- Here we look at four different models:
 - Erdos-Renyi model
 - Configuration model
 - Stochastic Block model
 - Barabasi-Albert model

- Erdos-Renyi model, also known as the random graph model is the most well-known graph generation algorithm.
- In this model, edges are considered to randomly connect nodes in the graph.
- To that end, given the size of the graph, the model assumes that the **probability** of occurrence of an edge between any given nodes in the graph is **constant**.
- Mathematically put,

$$p(A_{ij} = 1) = r, \quad \forall v_i, v_j \in V, \quad v_i \neq v_j$$

- The generative process for this model is as follows:
 - \triangleright Set the total **number of the nodes** in the graph |V|.
 - For each pair of nodes v_i and v_j , sample a uniform random number $r' \sim \mathcal{U}[0,1]$.
 - If r' > r, $A_{ij} = 1$.
 - Otherwise, $A_{ij} = 0$.

- The generative process for this model is as follows:
 - \triangleright Set the total **number of the nodes** in the graph |V|.
 - For each pair of nodes v_i and v_j , sample a uniform random number $r' \sim \mathcal{U}[0,1]$.
 - If r' > r, $A_{ij} = 1$.
 - Otherwise, $A_{ij} = 0$.
- > Example:

- The generative process for this model is as follows:
 - \triangleright Set the total **number of the nodes** in the graph |V|.
 - For each pair of nodes v_i and v_j , sample a uniform random number $r' \sim \mathcal{U}[0,1]$.
 - If r' > r, $A_{ij} = 1$.
 - Otherwise, $A_{ij} = 0$.
- > Example:

- The generative process for this model is as follows:
 - \triangleright Set the total **number of the nodes** in the graph |V|.
 - For each pair of nodes v_i and v_j , sample a uniform random number $r' \sim \mathcal{U}[0,1]$.
 - If r' > r, $A_{ij} = 1$.
 - Otherwise, $A_{ij} = 0$.
- > Example:

- The generative process for this model is as follows:
 - \triangleright Set the total **number of the nodes** in the graph |V|.
 - For each pair of nodes v_i and v_j , sample a uniform random number $r' \sim \mathcal{U}[0,1]$.
 - If r' > r, $A_{ij} = 1$.
 - Otherwise, $A_{ij} = 0$.
- > Example:

$$r = 0.5$$

$$r' = 0.7$$

- The generative process for this model is as follows:
 - \triangleright Set the total **number of the nodes** in the graph |V|.
 - For each pair of nodes v_i and v_j , sample a uniform random number $r' \sim \mathcal{U}[0,1]$.
 - If r' > r, $A_{ij} = 1$.
 - Otherwise, $A_{ij} = 0$.
- > Example:

$$r = 0.5$$

- The Erdos-Renyi model can control the density of the graph through the parameter r.
- However, it is not able to capture other graph properties, such as:
 - Degree distribution,
 - Community structure
 - Clustering coefficient

- The Erdos-Renyi model can control the density of the graph through the parameter r.
- However, it is not able to capture other graph properties, such as:
 - Degree distribution,
 - Community structure
 - Clustering coefficient
- Therefore, Erdos-Renyi does not capture characteristics of the real-world graphs.
- Nevertheless, it is a good indicator if the observed characteristics can be explained by the randomness, or it is a result of a more complex property.

Configuration model builds graphs from a sequence of the node degrees

$$\{d_1,\ldots,d_{|V|}\}$$

Configuration model builds graphs from a sequence of the node degrees

$$\{d_1,\ldots,d_{|V|}\}$$

Alternatively, one can instead **sample a sequence** of node degrees from a distribution p_k to construct graphs with desired degree distribution.

$$\{d_1,\ldots,d_{|V|}\}\sim p_k$$

- The generative process of the configuration model is as follows:
 - \triangleright **Set** the total number of the nodes in the graph |V|.
 - > Sample a sequence of node degrees $\{d_1, ..., d_{|V|}\} \sim p_k$.
 - \triangleright Given d_i , connect d_i half-edges to each node v_i .
 - Randomly choose a pair of half-edges and connect them.

- The generative process of the configuration model is as follows:
 - \triangleright **Set** the total number of the nodes in the graph |V|.
 - > **Sample** a sequence of node degrees $\{d_1, ..., d_{|V|}\} \sim p_k$.
 - \triangleright Given d_i , connect d_i half-edges to each node v_i .
 - Randomly choose a pair of half-edges and connect them.
- > Example:

- The generative process of the configuration model is as follows:
 - \triangleright **Set** the total number of the nodes in the graph |V|.
 - > **Sample** a sequence of node degrees $\{d_1, ..., d_{|V|}\} \sim p_k$.
 - \triangleright Given d_i , connect d_i half-edges to each node v_i .
 - Randomly choose a pair of half-edges and connect them.
- Example:

- The generative process of the configuration model is as follows:
 - \triangleright **Set** the total number of the nodes in the graph |V|.
 - > **Sample** a sequence of node degrees $\{d_1, ..., d_{|V|}\} \sim p_k$.
 - \triangleright Given d_i , connect d_i half-edges to each node v_i .
 - Randomly choose a pair of half-edges and connect them.
- > Example:

- The generative process of the configuration model is as follows:
 - \triangleright **Set** the total number of the nodes in the graph |V|.
 - > **Sample** a sequence of node degrees $\{d_1, ..., d_{|V|}\} \sim p_k$.
 - \triangleright Given d_i , connect d_i half-edges to each node v_i .
 - Randomly choose a pair of half-edges and connect them.
- Example:

- The generative process of the configuration model is as follows:
 - \triangleright **Set** the total number of the nodes in the graph |V|.
 - > **Sample** a sequence of node degrees $\{d_1, ..., d_{|V|}\} \sim p_k$.
 - \triangleright Given d_i , connect d_i half-edges to each node v_i .
 - Randomly choose a pair of half-edges and connect them.
- Example:

- The generative process of the configuration model is as follows:
 - \triangleright **Set** the total number of the nodes in the graph |V|.
 - > **Sample** a sequence of node degrees $\{d_1, ..., d_{|V|}\} \sim p_k$.
 - \triangleright Given d_i , connect d_i half-edges to each node v_i .
 - Randomly choose a pair of half-edges and connect them.
- Example:

- The generative process of the configuration model is as follows:
 - \triangleright **Set** the total number of the nodes in the graph |V|.
 - > **Sample** a sequence of node degrees $\{d_1, ..., d_{|V|}\} \sim p_k$.
 - \triangleright Given d_i , connect d_i half-edges to each node v_i .
 - Randomly choose a pair of half-edges and connect them.
- > Example:

- The generative process of the configuration model is as follows:
 - \triangleright **Set** the total number of the nodes in the graph |V|.
 - > Sample a sequence of node degrees $\{d_1, ..., d_{|V|}\} \sim p_k$.
 - \triangleright Given d_i , connect d_i half-edges to each node v_i .
 - Randomly choose a pair of half-edges and connect them.
- Example:

- However, there are some downsides to this approach.
- First, for all half-edges to be paired, the total sum of the node degrees should be even.
- To remedy that one can reject sampled sequences with an odd sum $\sum_{i}^{|V|} d_i$.

- However, there are some downsides to this approach.
- First, for all half-edges to be paired, the total sum of the node degrees should be even.
- * To remedy that one can reject sampled sequences with an odd sum $\sum_{i}^{|V|} d_i$.
- Another issue is that the self-loops and multi-edges are often absent from real graphs.
- However, randomly connecting the half-edges may result in self-connected nodes and multiple edges between a pair of nodes.
- Nonetheless, as the size of the graph grows, the number of such cases becomes negligible.

- Stochastic block model is designed to capture the community structure in the real-world graphs.
- * To that end, SBM defines a number of node clusters $\mathcal{A}_1, \dots, \mathcal{A}_{\gamma}$ to represent different communities.
- * Then, it assigns each node $v_i \in V$ to one of these clusters by sampling from a categorical distribution $(p_1, ..., p_{\gamma})$ representing the probability of nodes belonging to each of these clusters.
- Finally, by setting different edge probabilities to inter-cluster and within-cluster pairs of nodes, SBM generates a graph.
- To that end, it defines a block-block probability matrix C, where C_{ij} represents the probability of existence of an edge between nodes of two clusters A_i and A_j .

- Thus, the generative process of this model can be summarized as follows:
 - Set the total number of nodes.
 - \triangleright Assign each node $v_m \in V$ to a block \mathcal{A}_i .
 - For each pair of nodes $v_m \in A_i$ and $v_n \in A_j$, sample edge with the probability

$$p(A_{ij} = 1) = C_{ij}, \quad \forall v_m, v_n \in V, \quad v_m \in A_i, \quad v_n \in A_j$$

- While the model discussed here shows the most basic SBM model, the shared property of all these models is generating graphs that show community structure.
- One application of the SBM model is to study the community detection algorithms.
- However, the downside of these models is that they do not capture the characteristics of the real-world networks.
- For example, setting the same edge probabilities for all the nodes in a block yields similar structural properties (e.g. clustering coefficient, degree) for all the nodes in the graph.
- Therefore, SBM fails to capture the degree distribution of the real-world graphs.

- In the previous models, the goal was to recreate real-world graphs and study their structural features.
- In these methods, the parameters of the graph, such as nodes, or degree distribution was fixed in the beginning.
- Thus, the graph emerged at once.
- In the Barabasi-Albert model, however, the goal is to reenact the process of formation of the real-world graphs.
- Rather than constructing a graph with real-world characteristics, it investigates why such properties come to existence in the first place.

- Barabasi-Albert model tries to construct graphs with real-world degree distribution.
- Many real-world graphs follow power law degree distribution.
- \bullet In other words, probability of a given node v_i having degree k

$$p\left(d_i=k\right)\propto k^{\alpha}$$

Follows the power-law distribution (with $\alpha > 1$).

- Power-law distributions have heavy tail.
- Barabasi-Albert model constructs graphs that have a degree distribution that follows the power-law distribution.

- The generative process of Barabasi-Albert model consists of:
 - \triangleright Construct a complete graph with m_0 nodes.
 - \triangleright Iteratively add a new node v_t to the graph.
 - Connect v_t to $m \le m_0$ nodes that already exist in the graph $v_i \in V^{(t)}$ with the probability

$$P(A_{ti} = 1) = \frac{d_i^{(t)}}{\sum_{v_j \in V^{(t)}} d_j^{(t)}}$$

- Based on BA, new nodes are connected to the nodes of the graph with a probability proportional to their degree.
- This follows the "rich gets richer" notion.

* Example:

$$m=2$$

$$m_0 = 2$$

Example:

$$m=2$$

$$m_0 = 2$$

Example:

$$m=2$$

$$m_0 = 2$$

Example:

$$m=2$$

$$m_0 = 2$$

* Example:

$$m=2$$

$$m_0 = 2$$

Example:

The generative process of the Barabasi-Albert model is autoregressive and adds nodes to the graph one at a time.

Summary

- Graph generation
- Network Characteristics
 - Connectedness
 - Path length
 - Degree distribution
 - Clustering coefficient
- Graph generative models
 - Erdos-Renyi model
 - Configuration model
 - Stochastic Block model
 - Barabasi-Albert model

