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Intro

* So far in this course we have discussed representation
learning from graphs.

“ In this problem we construct embedding vectors from graph
(and nodes and edges alike) to be used for inference in
different problems.
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Graph Generation

“ In this part of the course, we look at the graph generation task.

< In graph generation, a deep generative model takes an
embedding vector as input and returns a graph.

“ In principle this task is inverse of the graph representation
learning.

)

7 c RV

m® UNIVERSITY OF
NOTRE DAME ACMS 80770: Deep Learning with Graphs, Navid Shervani-Tabar



Graph Generation

“ In this part of the course, we look at the graph generation task.

< In graph generation, a deep generative model takes an
embedding vector as input and returns a graph.

“ In principle this task is inverse of the graph representation
learning.
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Graph Generation

*» In this part of the course, we look at the graph generation task.

*» In graph generation, a deep generative model takes an
embedding vector as input and returns a graph.

* In principle this task is inverse of the graph representation
learning.
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Graph Generation

*» In this part of the course, we look at the graph generation task.

*» In graph generation, a deep generative model takes an
embedding vector as input and returns a graph.

* In principle this task is inverse of the graph representation
learning.
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*» However, before discussing deep graph generative models, we
will look at the characteristics of the real-world graphs.
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Graph Generation

*» Graphs are constructed from seemingly simple components
1. Nodes
2. Edges

*» But the main question is how to place these edges to recreate
the complexity of the real-world graphs.
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Graph Generation

*» Graphs are constructed from seemingly simple components
1. Nodes
2. Edges

*» But the main question is how to place these edges to recreate
the complexity of the real-world graphs.

*» Looking at the real-world graphs, the edges may appear to be
randomly connecting pairs of nodes.

» Internet,

» social network.
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Network Characteristics

*» To verify this impression, we assume that edges are distributed
randomly throughout the graph.

** Then, we inspect if randomness can explain these
characteristics of the real-world graphs.
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Network Characteristics

“* To verify this impression, we assume that edges are distributed
randomly throughout the graph.

“* Then, we inspect if randomness can explain these
characteristics of the real-world graphs.

“ To address this, we first ask what properties characterize the
structure of the real-world graphs.

< Important characteristics that affect the behavior of the graph
include:

» Connectedness
» Path length

» Degree distribution

» Clustering coefficient
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Connectedness

“* Most real-world graphs are constructed of

» A giant component that connects most of the nodes in the
graph.

» Afew small components.
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Connectedness

“* Most real-world graphs are constructed of

» A giant component that connects most of the nodes in the
graph.

» Afew small components.
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Connectedness

% Most real-world graphs are constructed of

« A giant component that connects most of the nodes in the
graph.

* Afew small components.

» Actors’ network is a graph consisting of nodes that represent
actors and edges connecting them based on the appearance
of two actors in a film together.

* Actors Network consists of 449913 nodes.

* The largest component of two actors Network consists of
440971 nodes.

« This makes for 98% of the graph!
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Connectedness

*» Some real-world graphs, however, only consists of one
component.

% This may be dictated by the nature of the data or by the
measurement approach used.
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Connectedness

% Some real-world graphs, however, only consists of one
component.

< This may be dictated by the nature of the data or by the
measurement approach used.

> Internet:

* Internet is a communication Network whose underlying
nature is to provide connection between all its entities

* Therefore, disconnected components do not have a use.

* Hence, the largest component of the internet is the graph
itself.
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Connectedness

% Some real-world graphs, however, only consists of one
component.

< This may be dictated by the nature of the data or by the
measurement approach used.

> Web:
« The structure of the web is mapped using web crawlers.

 If we use a single crawler to map the web, it only visits the
web pages that are linked by other web pages.

« Therefore, the measurement approach dictates that the
whole network has only one big giant component.
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Small-world effect

< Small-world effect is a phenomenon that states for most real-
world graphs the typical distance between the pairs of nodes
IS short.
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Small-world effect

*» Small-world effect is a phenomenon that states for most real-
world graphs the typical distance between the pairs of nodes
IS short.

< Let d;; represent the distance between nodes v; and v;.

< Then, the mean distance between v; and any node v; € Vis

1
vy 2%
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Small-world effect

*» Small-world effect is a phenomenon that states for most real-
world graphs the typical distance between the pairs of nodes
IS short.

< Let d;; represent the distance between nodes v; and v;.

< Then, the mean distance between v; and any node v; € Vis
1
V] Z /

< Thus, the mean distance between any two nodes v;, v; € V in
the graph is
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Small-world effect

< However, d;; is not defined for nodes v; and v; that do not
belong to the same component.
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Small-world effect

< However, d;; is not defined for nodes v; and v; that do not
belong to the same component.

*» Hence, we reformulate ¢ as

_ 2m 2ijevy, dis

14
2 |Vinl?

where A,, represents the component m in the graph with |V,
indicating the number of the nodes in that cluster.
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Small-world effect

< However, d;; is not defined for nodes v; and v; that do not
belong to the same component.

** Hence, we reformulate ¢ as

,_ D om 2ijev,, dij
> [Vin|?

where A,, represents the component m in the graph with |V,
indicating the number of the nodes in that cluster.

% Looking at the real-world graphs, for graphs with sizes of
order of millions of nodes, this measure is typically less than
10.
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Diameter

> Diameter of a graph is the longest, finite distance between any
two nodes in the graph.

*» One may suggest to inspect the diameter of the graph instead
of looking at the average distance.
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Diameter

<+ Diameter of a graph is the longest, finite distance between any
two nodes in the graph.

% One may suggest to inspect the diameter of the graph instead
of looking at the average distance.

* There are, however, two downsides to use of this measure to
study real-world graphs:

» It only measures the extreme end of the distribution of the
distances in the graph.

» This measure could substantially change by a single
modification to the graph.
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Degree Distribution

*» Degree distribution is one of the most fundamental
properties of the graph structure.

** Let p, indicate the fraction of nodes in the graph with degree k.

» Example:
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Degree Distribution

*» Degree distribution is one of the most fundamental
properties of the graph structure.

** Let p, indicate the fraction of nodes in the graph with degree k.

» Example:

« For the graph above with |[V| = 10, we can write
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Degree Distribution

*» Degree distribution is one of the most fundamental
properties of the graph structure.

** Let p, indicate the fraction of nodes in the graph with degree k.
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Degree Distribution

*» Degree distribution is one of the most fundamental
properties of the graph structure.

** Let p, indicate the fraction of nodes in the graph with degree k.

» Example:

« For the graph above with |[V| = 10, we can write
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Degree Distribution

*» Degree distribution is one of the most fundamental
properties of the graph structure.

** Let p, indicate the fraction of nodes in the graph with degree k.

» Example:

« For the graph above with |[V| = 10, we can write
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Degree Distribution

*» Degree distribution is one of the most fundamental
properties of the graph structure.

** Let p, indicate the fraction of nodes in the graph with degree k.

» Example:

« For the graph above with |[V| = 10, we can write
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Degree Distribution

*» Degree distribution is one of the most fundamental
properties of the graph structure.

** Let p, indicate the fraction of nodes in the graph with degree k.

» Example:
o
1 2 4 2 1
p0_107 p1_107 p2_107 p3_107 p4_10

“* p; represents the degree distribution of the network.

“ In other words, p,, represents the probability of a randomly
chosen node v; having degree k.
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Power-law distribution

“* The degree distribution for most real-world examples have a
heavy tail.
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Power-law distribution

“* The degree distribution for most real-world examples have a
heavy tail.

*» That is, the probability of having highly connected nodes is
non-zero.

*» These nodes with unusually high degree are referred to as
hubs.

& /v A few hubs
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Power-law distribution

“* The degree distribution for most real-world examples have a
heavy tail.

*» That is, the probability of having highly connected nodes is
non-zero.

*» These nodes with unusually high degree are referred to as
hubs.

*» Meanwhile, most nodes have a very low degree.

Most nodes
of the graph

/v A few hubs
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Power-law distribution

“* The degree distribution for most real-world examples have a
heavy tail.

*» That is, the probability of having highly connected nodes is
non-zero.

*» These nodes with unusually high degree are referred to as
hubs.

*» Meanwhile, most nodes have a very low degree.

. Most nodes
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Power-law distribution

“* When this degree distribution is plotted on a log-scale, it
roughly follows a straight line.
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Power-law distribution

“* When this degree distribution is plotted on a log-scale, it
roughly follows a straight line.

*» We can formulate this interpretation as

Inp, = —alnk+C

where «a is the slope of the line.
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Power-law distribution

“* When this degree distribution is plotted on a log-scale, it
roughly follows a straight line.

“* We can formulate this interpretation as

Inp, = —alnk+C

where «a is the slope of the line.

% Taking the exponential of both sides, we have

pr o< k™

*+ This distribution is referred to as power-law distribution.
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Scale-free Graphs

“* Power-law distribution is characterized by its heavy tail.
“* Power-law is also known as pareto distribution.

“* Graphs that follow a power-law degree distribution are known
as scale-free networks.

“+ These graphs consist of:
» A core, that contains most of the nodes in the graph.

» Longer streams that are attached to the core.
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Clustering Coefficients

«» Earlier in the course, we defined the clustering coefficient of a
node as the density of the triangles in the vicinity of the

node.
Connected pair

of neighbors
|(v1,v2) € & : vy, v9 € N(u)]
2dy(dy — 1)

Cy —

Total pair of neighbors 4—/

“ Alternatively, one can interpret the clustering coefficient as the
average probability of two neighbors of a node being
connected.
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Graph generation

“* Now we look at the graph generation approaches.

% To motivate the deep graph generative models, we first look
at the traditional graph generation algorithms.

“» These methods try to construct non-trivial graphs that have
the desirable properties of the real-world graphs.
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Graph generation

“* Now we look at the graph generation approaches.

% To motivate the deep graph generative models, we first look
at the traditional graph generation algorithms.

“» These methods try to construct non-trivial graphs that have
the desirable properties of the real-world graphs.

“* We refer to the construction algorithm as the generative
process.

“* Here we look at four different models:
» Erdos-Renyi model
» Configuration model
» Stochastic Block model
» Barabasi-Albert model
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Erdos-Renyi Model

“» Erdos-Renyi model, also known as the random graph model
Is the most well-known graph generation algorithm.

< In this model, edges are considered to randomly connect
nodes in the graph.

% To that end, given the size of the graph, the model assumes
that the probability of occurrence of an edge between any
given nodes in the graph is constant.

“* Mathematically put,

p(Aij = 1) =T, \V/’Ui,fl)j cV, w; 7& (o
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Erdos-Renyi Model

** The generative process for this model is as follows:
» Set the total number of the nodes in the graph |V|.

» For each pair of nodes v; and v;, sample a uniform random
number r’ ~ U[0,1].

° IfT,>T,Aij=1.

+ Otherwise, 4;; = 0.
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Erdos-Renyi Model

** The generative process for this model is as follows:
» Set the total number of the nodes in the graph |V|.

» For each pair of nodes v; and v;, sample a uniform random
number r’ ~ U[0,1].

° IfT,>T,Aij=1.
+ Otherwise, 4;; = 0.

» Example:
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Erdos-Renyi Model

** The generative process for this model is as follows:
» Set the total number of the nodes in the graph |V|.

» For each pair of nodes v; and v;, sample a uniform random
number r’ ~ U[0,1].

° IfT,>T,Aij=1.
+ Otherwise, 4;; = 0.

» Example:
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Erdos-Renyi Model

** The generative process for this model is as follows:
» Set the total number of the nodes in the graph |V|.

» For each pair of nodes v; and v;, sample a uniform random
number r’ ~ U[0,1].

° IfT,>T,Aij=1.
+ Otherwise, 4;; = 0.

» Example:
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Erdos-Renyi Model

** The generative process for this model is as follows:
» Set the total number of the nodes in the graph |V|.

» For each pair of nodes v; and v;, sample a uniform random
number r’ ~ U[0,1].

° IfT,>T,Aij=1.
+ Otherwise, 4;; = 0.

» Example:
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Erdos-Renyi Model

** The generative process for this model is as follows:
» Set the total number of the nodes in the graph |V|.

» For each pair of nodes v; and v;, sample a uniform random
number r’ ~ U[0,1].

° IfT,>T,Aij=1.
+ Otherwise, 4;; = 0.

» Example:
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Erdos-Renyi Model

*» The Erdos-Renyi model can control the density of the graph
through the parameter r.

*» However, it is not able to capture other graph properties, such
as:

» Degree distribution,
» Community structure

» Clustering coefficient
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Erdos-Renyi Model

< The Erdos-Renyi model can control the density of the graph
through the parameter r.

“* However, it is not able to capture other graph properties, such
as:

» Degree distribution,
» Community structure
» Clustering coefficient

“ Therefore, Erdos-Renyi does not capture characteristics of
the real-world graphs.

“* Nevertheless, it is a good indicator if the observed
characteristics can be explained by the randomness, oritis a
result of a more complex property.
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Configuration Model

+» Configuration model builds graphs from a sequence of the
node degrees

{dl, Ny dlvl}
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Configuration Model

+» Configuration model builds graphs from a sequence of the
node degrees

{dl' Ny dlvl}

*» Alternatively, one can instead sample a sequence of node
degrees from a distribution p;, to construct graphs with desired
degree distribution.

{dy, ., dpy} ~ px
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Configuration Model

*» The generative process of the configuration model is as
follows:

» Set the total number of the nodes in the graph |V].
> Sample a sequence of node degrees {d,, ..., djy|} ~ pk.

» Given d;, connect d; half-edges to each node v;.

» Randomly choose a pair of half-edges and connect them.
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Configuration Model

*» The generative process of the configuration model is as
follows:

» Set the total number of the nodes in the graph |V].
> Sample a sequence of node degrees {d,, ..., djy|} ~ pk.

» Given d;, connect d; half-edges to each node v;.

» Randomly choose a pair of half-edges and connect them.

» Example:
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Configuration Model

*» The generative process of the configuration model is as
follows:

» Set the total number of the nodes in the graph |V].
> Sample a sequence of node degrees {d,, ..., djy|} ~ pk.

» Given d;, connect d; half-edges to each node v;.

» Randomly choose a pair of half-edges and connect them.
» Example:

{37 17 47 27 O} ~ Pk
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Configuration Model

*» The generative process of the configuration model is as
follows:

» Set the total number of the nodes in the graph |V].
> Sample a sequence of node degrees {d,, ..., djy|} ~ pk.

» Given d;, connect d; half-edges to each node v;.

» Randomly choose a pair of half-edges and connect them.

X {371747270} ~ Pk
Y N

s
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Configuration Model

*» The generative process of the configuration model is as
follows:

» Set the total number of the nodes in the graph |V].
> Sample a sequence of node degrees {d,, ..., djy|} ~ pk.

» Given d;, connect d; half-edges to each node v;.

» Randomly choose a pair of half-edges and connect them.

X {371747270} ~ Pk
Y A
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Configuration Model

*» The generative process of the configuration model is as
follows:

» Set the total number of the nodes in the graph |V].
> Sample a sequence of node degrees {d,, ..., djy|} ~ pk.

» Given d;, connect d; half-edges to each node v;.

» Randomly choose a pair of half-edges and connect them.

/
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» Example:

{37 17 47 27 O} ~ Pk
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Configuration Model

*» The generative process of the configuration model is as
follows:

» Set the total number of the nodes in the graph |V].
> Sample a sequence of node degrees {d,, ..., djy|} ~ pk.

» Given d;, connect d; half-edges to each node v;.

» Randomly choose a pair of half-edges and connect them.

/
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» Example:

{37 17 47 27 O} ~ Pk
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Configuration Model

*» The generative process of the configuration model is as
follows:

» Set the total number of the nodes in the graph |V].
> Sample a sequence of node degrees {d,, ..., djy|} ~ pk.
» Given d;, connect d; half-edges to each node v;.

» Randomly choose a pair of half-edges and connect them.
» Example:

{37 17 47 27 O} ~ Pk
Y .
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Configuration Model

*» The generative process of the configuration model is as
follows:

» Set the total number of the nodes in the graph |V].
> Sample a sequence of node degrees {d,, ..., djy|} ~ pk.
» Given d;, connect d; half-edges to each node v;.

» Randomly choose a pair of half-edges and connect them.
» Example:

{37 17 47 27 O} ~ Pk
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Configuration Model

**» However, there are some downsides to this approach.

*» First, for all half-edges to be paired, the total sum of the node
degrees should be even.

*+ To remedy that one can reject sampled sequences with an odd
sum YV d;.
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Configuration Model

“* However, there are some downsides to this approach.

“ First, for all half-edges to be paired, the total sum of the node
degrees should be even.

< To remedy that one can reject sampled sequences with an odd
sum YV d;.

< Another issue is that the self-loops and multi-edges are often
absent from real graphs.

“ However, randomly connecting the half-edges may result in
self-connected nodes and multiple edges between a pair of
nodes.

“* Nonetheless, as the size of the graph grows, the number of
such cases becomes negligible.
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Stochastic Block Model

% Stochastic block model is designed to capture the
community structure in the real-world graphs.

< To that end, SBM defines a number of node clusters A;, ..., A,
to represent different communities.

% Then, it assigns each node v; € V to one of these clusters by
sampling from a categorical distribution (p,, ..., p, ) representing

the probability of nodes belonging to each of these clusters.

< Finally, by setting different edge probabilities to inter-cluster
and within-cluster pairs of nodes, SBM generates a graph.

< To that end, it defines a block-block probability matrix €, where
C;; represents the probability of existence of an edge between

nodes of two clusters A; and A;.
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Stochastic Block Model

*» Thus, the generative process of this model can be summarized
as follows:

» Set the total number of nodes.
» Assign each node v,,, € V to a block A;.

» For each pair of nodes v,, € A; and v,, € A;, sample edge
with the probability

p(A4i; =1)=Cy;, Yop,v, €V, v, €A, v,€A
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Stochastic Block Model
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Stochastic Block Model

“* While the model discussed here shows the most basic SBM
model, the shared property of all these models is generating
graphs that show community structure.

“* One application of the SBM model is to study the community
detection algorithms.

“* However, the downside of these models is that they do not
capture the characteristics of the real-world networks.

“* For example, setting the same edge probabilities for all the
nodes in a block yields similar structural properties (e.g.
clustering coefficient, degree) for all the nodes in the graph.

“ Therefore, SBM fails to capture the degree distribution of the
real-world graphs.
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Barabasi-Albert model

“* In the previous models, the goal was to recreate real-world
graphs and study their structural features.

“ In these methods, the parameters of the graph, such as nodes,
or degree distribution was fixed in the beginning.

“* Thus, the graph emerged at once.

< In the Barabasi-Albert model, however, the goal is to reenact
the process of formation of the real-world graphs.

“* Rather than constructing a graph with real-world
characteristics, it investigates why such properties come to
existence in the first place.
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Barabasi-Albert model

“+» Barabasi-Albert model tries to construct graphs with real-world
degree distribution.

< Many real-world graphs follow power law degree distribution.

< In other words, probability of a given node v; having degree k
p(d; = k) < k%

Follows the power-law distribution (with a > 1).
<+ Power-law distributions have heavy tail.

<+ Barabasi-Albert model constructs graphs that have a degree
distribution that follows the power-law distribution.
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Barabasi-Albert model

% The generative process of Barabasi-Albert model consists of:

» Construct a complete graph with m, nodes.
» lteratively add a new node v; to the graph.

» Connect v; to m < m, nodes that already exist in the graph
v; € VO with the probability

+» Based on BA, new nodes are connected to the nodes of the
graph with a probability proportional to their degree.

< This follows the “rich gets richer” notion.
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Barabasi-Albert model

» Example:
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Barabasi-Albert model

» Example:
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Barabasi-Albert model

» Example:

UNIVERSITY OF

NOTRE DAME

ACMS 80770: Deep Learning with Graphs, Navid Shervani-Tabar

74



Barabasi-Albert model

» Example:
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Barabasi-Albert model

» Example:
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Barabasi-Albert model

» Example:

“* The generative process of the Barabasi-Albert model is

autoregressive and adds nodes to the graph one at a time.
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Summary

4

L)

» Graph generation

» Network Characteristics
» Connectedness

» Path length

» Degree distribution

» Clustering coefficient
“+ Graph generative models
» Erdos-Renyi model

» Configuration model

» Stochastic Block model
» Barabasi-Albert model

L)

4
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L)
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