Machine Learning Tasks on Graphs

ACMS 80770: Deep Learning with Graphs

Instructor: Navid Shervani-Tabar

Department of Applied and Comp Math and Stats

Learning

- In data science, we often deal with problems that predict a target variable y given an input variable x.
- Traditionally, machine learning models address this by learning a map from input data to target labels.
- Regression
 - Advertising spending and revenue.

- Classification
 - Predict image categories.

Learning

- * You use a dataset $D = \{x^{(i)}, y^{(i)}\}_{i \le N}$ of N data points $x^{(i)}$ and their corresponding labels $y^{(i)}$ to train your model.
- Regression

Classification

This approach is called supervised learning.

Learning

- In some problems, we don't have access to labels.
- Cluster
 - Classify MNIST digits without labels.

- * The model is trained using a dataset $D = \{x^{(i)}\}_{i \le N}$ of N data points $x^{(i)}$ without any labels.
- This approach is called unsupervised learning.

Learning on Graphs

- Similar ML approaches can learn over graphs.
- Classification
 - Predict toxicity of chemicals.

In this example, the model is trained using a dataset $D = \{G^{(i)}, y^{(i)}\}_{i \le N}$ of N graphs $G^{(i)}$, which are independent, and the corresponding labels $y^{(i)}$.

Learning on Graphs

- Extension of these ideas to graph domain considers each graph as an independent and identically distributed sampled datapoint.
- Graph ML consists of:
- Learning over a dataset of graphs.
- Learning within a single graph.

Learning on Graphs

- Graph ML tasks are in the level of nodes, edges, subgraphs, or graphs.
- Within-graph tasks are based on data that are not independently and identically distributed.
- Traditional machine learning is equivalent to graph-level tasks.

- Node Classification:
- In this problem, we learn to predict labels associated with each node in the graph.
- Such model is trained on a graph and its partial node attributes, i.e. training dataset is defined as

$$D = \{V, E, \{f_u | u \in \mathcal{A}, \mathcal{A} \subset V\}\}$$

- Fake accounts problem:
- Classify users of a social network website to fake or real users given labels for a small portion of users.

- Instead of node attributes, their connections are leveraged to yield predictions.
- General strategies to tackle node classification include:
- Homophily
- Equivalence
- Heterophily

Homophily:

Elementary school friendship network:

- Homophily: Tendency to associate with similar others.
- Birds of a feather flock together.
- Citation network: same field.
- Elementary school friendship network: gender.

- Equivalence:
- Nodes with similar neighborhood structure tend to have similar features.
- Structural equivalence

Regular equivalence

Equivalence:

- Nodes with similar neighborhood structure tend to have similar features.
- Structural equivalence

Regular equivalence

Equivalence:

- Nodes with similar neighborhood structure tend to have similar features.
- Structural equivalence

Regular equivalence

Heterophily:

- Nodes that interact with each other tend to have opposite attributes.
- Also called disassortative mixing.
- Rarely observed in graphs.
- Sexual contact network.

Edge-Level Tasks

- Link prediction:
- In this problem, we predict relationship between two nodes by observing a portion of the edges in a graph.
- The model is trained using a dataset that includes set of all nodes and a subset of the edges,

$$D = \{V, \{(u, v) | u, v \in V, (u, v) \in B, B \subset E\}\}\$$

Heterogeneous Graphs

Heterogeneous graphs are a type of multi-relational graphs where both nodes and edges have types:

$$V = V_1 \cup \ldots \cup V_k, V_i \cap V_j = \emptyset, \forall i \neq j$$

Here, V_i is set of nodes with type j.

lacktriangle Edges of specific type τ_i usually only connect nodes of certain types.

$$(u, \tau_i, v) \in \varepsilon \to u \in V_j, v \in V_k$$

Link Prediction

- Polypharmacy side-effect prediction
- Taking multiple drugs results in new side-effects
- Not all combinations of drugs have been studied.

 τ_1 : Protein-protein interaction

 τ_2 : Protein-drug interaction

 τ_3 : Polypharmacy side-effect

 V_1 : Drugs

 V_2 : Proteins

Hypergraph

- An edge that connects more than two nodes is called a hyperedge.
- A graph with hyperedges is called a hypergraph.
- Hyperedges are used to show membership in a group.
- Recommender system:
- Connects book readers and the books they read.

Bipartite Graphs

- Information on a hypergraph can equivalently be represented by a bipartite graph.
- Bipartite graphs, bigraphs, or two mode graphs consist of two disjoint sets of nodes.
- It is a special case of heterogenous graphs where edges only exist between nodes of different sets.

Bipartite Graphs

- This type of graph is often used to represent interactions between two separate type of components or nodes.
- The authorship graph:
- connects authors with their papers.

Link Prediction

- Recommending content:
- We use a bipartite graph to represent interactions between users and content, e.g. Netflix users and movies, Amazon shoppers and items.

Link Prediction

- Recommending content:
- We use a bipartite graph to represent interactions between users and content, e.g. Netflix users and movies, Amazon shoppers and items.
- The predicted link is presented in the form of a recommendation to watch a movie or purchase an item

Bipartite Graphs

- One interesting property of the bipartite graphs is that each set of nodes can be projected onto a projection graph.
- Each projected graph includes nodes of one set and edges that connect nodes who share a neighbor.

Bipartite Graphs

- One interesting property of the bipartite graphs is that each set of nodes can be projected onto a projection graph.
- Each projected graph includes nodes of one set and edges that connect nodes who share a neighbor.

Multi-partite Graph

- K-partite graphs consist of k disjoint set of nodes, where nodes of the same set are not connected.
- UberEats network.

Clustering

- Clustering problem within a graph partitions it into subgraphs with similar underlying structure.
- Depending on the problem, these subgraphs may or may not overlap.
- The model is trained on the set of nodes and edges in the graph $D = \{V, E\}$.

Clustering

Detect latent community structures (Community detection).

Clustering

- Detect latent community structures (Community detection).
- The underlying structures learned from a collaboration graph may yield communities based on department, demographic, or research interests.

A graph is connected if there is a path between any given pair of nodes in the graph.

A graph is connected if there is a path between any given pair of nodes in the graph.

If graph is not connected, each connected subgraph is called a component.

- Disconnected graphs have an adjacency matrix with nonzero square blocks on the diagonal and zeros outside of these blocks.
- Using this principle, linear algebraic methods can inspect the connectedness of the graph.

- There are two types of connectivity in directed graphs:
- > Strong connectivity: If there is a path from every node $u \in V$ to every node $v \in V$, the graph is strongly connected.

- ➤ Weak connectivity: If the graph is not strongly connected, but removing directions yields a connected undirected graph.
- Example: Web.

- There are two types of components in directed graphs:
- A weakly connected component consists of nodes that are connected through one or more paths that can go either direction.

There are two types of components in directed graphs:

A weakly connected component consists of nodes that are connected through one or more paths that can go either direction

There are two types of components in directed graphs:

A weakly connected component consists of nodes that are connected through one or more paths that can go either direction

There are two types of components in directed graphs:

A weakly connected component consists of nodes that are connected through one or more paths that can go either direction.

Graph-Level Tasks

- Make prediction based on the whole graph. Closer to conventional ML tasks.
- Accounts for the inherent topology of the datapoints in addition to the data that it presents.
- ➤ **Graph regression:** Predict real value graph-level attributes given the graph structure, e.g. property prediction.
- * The training dataset $D = \{G^{(i)}, y^{(i)}\}_{i \le N}$ includes a set of N iid graphs $G^{(i)}$ and their corresponding properties $y^{(i)}$.

Graph classification: Predict the graph-level target label for the input graph (e.g., solubility and toxicity prediction)

Graph-Level Tasks

- Graph clustering: Group a set of graphs into different clusters.
- Data: iid data points $G = \{G^{(i)}\}.$
- This task is equivalent to unsupervised learning in traditional ML.
- Ring size, number of hydrogens, functional groups.

Summary

- Learning Tasks on graphs
 - Node-level tasks: Node classification
 - Strategies: Homophily, Equivalence, Heterophily.
 - Edge-level tasks: Link prediction
 - Heterogenous graphs
 - Hypergraphs
 - Bipartite and multi-partite graphs
 - Subgraph-level tasks: Clustering
 - Connectedness
 - Components
 - Graph-level tasks: Regression, classification, and clustering.

