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Shallow Embedding

% The node embedding methods discussed so far learn based
on a shallow embedding.

% Shallow embedding methods have a few shortcomings:
» They do not share parameters within nodes in the encoder.

* This is computationally more expensive and statistically less
efficient.
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Shallow Embedding

% The node embedding methods discussed so far learn based
on a shallow embedding.

% Shallow embedding methods have a few shortcomings:
» They do not share parameters within nodes in the encoder.

* This is computationally more expensive and statistically less
efficient.

» They are transductive.
« Can't learn embedding on nodes not seen during the training.
» They don’t leverage node attributes.
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Shallow Embedding

% The node embedding methods discussed so far learn based
on a shallow embedding.

% Shallow embedding methods have a few shortcomings:
» They do not share parameters within nodes in the encoder.

* This is computationally more expensive and statistically less
efficient.

» They are transductive.
« Can't learn embedding on nodes not seen during the training.

» They don’t leverage node attributes.

*» More sophisticated encoders based on deep learning models
alleviate these limitations
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Supervised Learning

“* Solving supervised ML problems involves approximating a
mapping f:x = y between the inputs x and outputs y.
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Supervised Learning

“* Solving supervised ML problems involves approximating a
mapping f:x = y between the inputs x and outputs y.

» Regression
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Supervised Learning

“* Solving supervised ML problems involves approximating a
mapping f:x = y between the inputs x and outputs y.

» Regression

mll -7 — v

» Classification
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Supervised Learning

“* Linear models map data x to the output y using a function of
the form

y = fo(x) =Wx+b

where 8 = {W, b}.

» The linearity assumption in these models is restricting.
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Supervised Learning

“* Linear models map data x to the output y using a function of
the form

y = fo(x) =Wx+b
where 8 = {W, b}.
» The linearity assumption in these models is restricting.

< One way to alleviate this is by instead mapping some feature
transformation ¢ (x) of input x

y =Wo(x)+b

+* The model is constructed of linear combination of fixed basis
functions.

% v IS now an expansion in the basis function ¢.
y
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Supervised Learning

“* These models are easy to optimize as the model is linear in
the parameter space.

» Hand designing ¢ poses limits on this approach and makes
it less efficient.

» Also, when the dimension of the data increases, the
applicability of these models gets limited.
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Neural Networks

“* These models are easy to optimize as the model is linear in
the parameter space.

» Hand designing ¢ poses limits on this approach and makes
it less efficient.

» Also, when the dimension of the data increases, the
applicability of these models gets limited.

“* One remedy to this problem is using basis functions that are
adapted to the data.

“* In other words, we extend the previous model and instead of
defining ¢, learn ¢.
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Neural Networks

“+ This can be done by parameterizing ¢ as
Yy = ng@z (X) +b

where 6, is some parameter for basis function ¢.

% The learned parameters include 6, = {W, b} and 6,.
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Neural Networks

% This can be done by parameterizing ¢ as
y = Wge,(x) +

where 6, is some parameter for basis function ¢.
% The learned parameters include 6, = {W, b} and 6,.
“* Neural networks are one such approach.
“* Arecursive application of this parameterized basis function

fo(x) = fL(fL—1(... fi(x)...))
can learn more complex functions.

* This is the main idea behind deep neural networks.
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Neural Networks

% A fully-connected neural network f is a non-linear function

parametrized by W, that maps a set of input variables x to output
variables vy.

y = fo(x)
and consists of a cascade of transformations

ye =0(Wy_10ye—1+bi_1)

with @ = {W,_, ,,b,_,}for 0 < # < Land y, = x, and ¢ is non-
linearity.
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Neural Networks

% A fully-connected neural network f is a non-linear function

parametrized by W, that maps a set of input variables x to output
variables vy.

y = fo(x)
and consists of a cascade of transformations

ye =0(Wy_10ye—1+bi_1)

with @ = {W,_, ,,b,_,}for 0 < # < Land y, = x, and ¢ is non-

linearity.
w W W
BO_7 0,1 =MO_ 2’3 o

* Each intermediate output y, is called a hidden layer.
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Activation Function

v There are a number of non-linear activation functions that are

used.

» Tanh
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Activation Function

v There are a number of non-linear activation functions that are

used.

» Sigmoid
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Activation Function

v There are a number of non-linear activation functions that are
used.

» RelLU
r x>0
0 ifx<O
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Activation Function

v There are a number of non-linear activation functions that are

used.

» LeakyRelU
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Activation Function

v There are a number of non-linear activation functions that are

used.

» SoftPlus
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Training

% Constructing a model requires

» An architecture.

» An objective function.

» An optimization procedure.
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Training

% Constructing a model requires
» An architecture.
» An objective function.

» An optimization procedure.

“ In a data-driven approach, an objective function based on the
training data D is optimized to yield the model parameters.

“* This is referred to as training or model fitting.

% Assuming that training data is sampled from a true distribution
Paata, WE define the model pg and find parameters that give
high probability to the observed data.

ot UNIVERSITY OF
NOTRE DAME ACMS 80770: Deep Learning with Graphs, Navid Shervani-Tabar

25



Training

“* In most occasions, the model represents a parametric
conditional probability distribution,

Do (y(i) |X(73))

“ Assuming data points are independently sampled from p;4¢4,
we rewrite likelihood as

N
po(D) = [ po(y™|x®)
1=1
“ This is assuming training data is Independent and identically

distributed (iid).

% Given training data D = {x"),y(V} __ the objective is to
maximize the probability of the observed data D.
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Training

¢ In other words

A

0 = arg max pe (D)

where

Hpe Wx®)

< Alternatively, we use negative log-likelihood for numerical
stability

N
éMLE = arg mein — Z logpe (y(z) | X(Z)>

1=1
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Optimization

< Optimizing a function J(0) refers to minimizing or maximizing
J(0) by altering parameter 6.

< A gradient-based optimization method uses gradient of the
objective function to guide the parameter space.
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Optimization

< Optimizing a function J(0) refers to minimizing or maximizing
J(0) by altering parameter 6.

< A gradient-based optimization method uses gradient of the
objective function to guide the parameter space.
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Optimization

< Optimizing a function J(0) refers to minimizing or maximizing
J(0) by altering parameter 6.

< A gradient-based optimization method uses gradient of the
objective function to guide the parameter space.

“* The derivative of J(x) returns the slope of J at point x.

% To minimize a function f, we move in the direction of the
negative of the derivative.

dJ(x)
dx

< For multivariate function f, we need to compute the partial
derivative of f(x) with respect to variables x;.
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Optimization

% For a multivariate function f(x): R" - R and variable x € R",
we represent the vector of partial derivatives using gradient

0 1,
Veflx)=|—f(x),..., — f(x
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NOTRE DAME ACMS 80770: Deep Learning with Graphs, Navid Shervani-Tabar

31



Stochastic Gradient Decent

% For a multivariate function f(x): R"™ —» R and variable x € R",
we represent the vector of partial derivatives using gradient

9 9

(@) f(@)

“ In deep learning algorithms, the objective is usually to
minimize a loss function computed based on the training data

1 N | |
L= N ;l(fe(x(z))ay(z))

“* However, computing this gradient for whole dataset D is
computationally expensive.
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Stochastic Gradient Decent

“* Most deep learning models instead rely on a method called
stochastic gradient decent (SGD).

% This approach instead of computing the gradient for whole
dataset, approximates the gradient using a mini-batch of data
sampled uniformly from D

N/

SO

=1
1 N o
Vol ~ ﬁve Zl(fe(x(z),y(z)))
=1

“» The parameters are then updated iteratively using

9"t — 9" —nVeLl

ot UNIVERSITY OF
NOTRE DAME ACMS 80770: Deep Learning with Graphs, Navid Shervani-Tabar

33



Backprop

% Given an input x to a function f, representing a feed forward

network, information propagate forward to yield prediction .
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Backprop

% Given an input x to a function f, representing a feed forward

network, information propagate forward to yield prediction ¥.

W o, W o, W )
BJ 071=@—1,2@ 2’3§...

“+ During the training, this prediction y is plugged into the
objective function to evaluate the model.

< To update the model parameter through a gradient-based
scheme, we need to compute the gradient of objective with

respect to each parameter.
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Backprop

< To compute the derivative of objective function, we use an

algorithm called error backpropagation, or in short backprop.

< In this algorithm, derivatives of the loss function are
propagated backward through the network to compute the
gradient of objective with respect to the weight parameters in
the earlier layers.

W o, W o, W )
Ba 071=@—1,2@ 2,3§...
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Backprop

< To compute the derivative of objective function, we use an

algorithm called error backpropagation, or in short backprop.

< In this algorithm, derivatives of the loss function are
propagated backward through the network to compute the
gradient of objective with respect to the weight parameters in
the earlier layers.

W o, W o, W )
Ba 071=@—1,2@ 2,3§...

<+ Backprop takes advantage of chain rule of calculus to
efficiently compute derivatives of a function.
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Chain Rule

“ In calculus, chain rule is used to compute derivative of a
function f, which is composed of other functions and variables
with known derivatives.

“» Let
z=fy) and  y=g(z)

where f:R - R and g: R — R are two functions.
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Chain Rule

“ In calculus, chain rule is used to compute derivative of a
function f, which is composed of other functions and variables
with known derivatives.

» Let
2= f(y) and  y=g()

where f:R - R and g: R — R are two functions.

“* We can use chain rule to compute the derivative of z with
respect to x.

d: _dzdy
dr  dydx
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Chain Rule

“ In calculus, chain rule is used to compute derivative of a
function f, which is composed of other functions and variables
with known derivatives.

“» Let
z=fy) and  y=g(z)

where f:R - R and g: R — R are two functions.

“* We can use chain rule to compute the derivative of z with
respect to x.

dz _ dzdy
dr  dydx
*2* This can be extended to multivariate functions.
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Chain Rule

% Let
z = f(y) and y = g(x)

where f:R™ - R and g: R" - R™ are two multivariate
functions.
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Chain Rule

% Let
z = f(y) and y = g(x)

where f:R™ - R and g: R" - R™ are two multivariate
functions.

** We can use chain rule to compute the derivatives

Sy
da:z dy; dx;
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Chain Rule

% Let
z = f(y) and y = g(x)

where f:R™ - R and g: R" - R™ are two multivariate
functions.

** We can use chain rule to compute the derivatives

Z dz dy;
da:z dy; dx;

** In vector notation

V,.z = 8—yTVz
T\ Oz Y
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Chain Rule

% Let
z = f(y) and y = g(x)

where f:R™ - R and g: R" - R™ are two multivariate
functions.

** We can use chain rule to compute the derivatives

Z dz dy;
da:z dy; dx;

V.,.z = 8_y TVZ
T\ O 4
W_/H_J

Jacobian 4/ \> Gradient
By UNIVERSITY OF
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Computational Graph

“» Backprop can best be demonstrated using computational
graph.

“* We can use graphs to describe computations and operations

“* An operation is a function that takes one or more variables as
iInput and returns a single output.
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Computational Graph

“» Backprop can best be demonstrated using computational
graph.

“* We can use graphs to describe computations and operations

“* An operation is a function that takes one or more variables as
iInput and returns a single output.

z = xY
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Computational Graph

“» Backprop can best be demonstrated using computational
graph.

“* We can use graphs to describe computations and operations

“* An operation is a function that takes one or more variables as
iInput and returns a single output.

@
010,

z = xY
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Computational Graph

“» Backprop can best be demonstrated using computational
graph.

“* We can use graphs to describe computations and operations

“* An operation is a function that takes one or more variables as
iInput and returns a single output.

z = xY
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Computational Graph

“» Backprop can best be demonstrated using computational
graph.

“* We can use graphs to describe computations and operations

“* An operation is a function that takes one or more variables as
iInput and returns a single output.

Z =y H = max{0, WX + b}
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Computational Graph

“» Backprop can best be demonstrated using computational
graph.

“* We can use graphs to describe computations and operations

“* An operation is a function that takes one or more variables as
iInput and returns a single output.

®
@S@@ O® ®

H = max{0, WX + b}
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Computational Graph

“» Backprop can best be demonstrated using computational
graph.

“* We can use graphs to describe computations and operations

“* An operation is a function that takes one or more variables as
iInput and returns a single output.

0
@S@@ @@ ® ©
Z =y H = max{0, WX + b}
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Computational Graph

“» Backprop can best be demonstrated using computational
graph.

“* We can use graphs to describe computations and operations

“* An operation is a function that takes one or more variables as
iInput and returns a single output.

0,

H = max{0, WX + b}
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Computational Graph

“» Backprop can best be demonstrated using computational
graph.

“* We can use graphs to describe computations and operations

“* An operation is a function that takes one or more variables as
iInput and returns a single output.

(U )2 (v:)

matmul
QSX 0@

Z =y H = max{0, WX + b}
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Computational Graph

“» Backprop can best be demonstrated using computational
graph.

“* We can use graphs to describe computations and operations

“* An operation is a function that takes one or more variables as
iInput and returns a single output.

(U )2 (v:)

matmul
QSX 0@

2=y H = max{0, WX + b} Y = wx
)‘Zi wz2
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Computational Graph

“» Backprop can best be demonstrated using computational
graph.

“* We can use graphs to describe computations and operations

“* An operation is a function that takes one or more variables as
iInput and returns a single output.

% matmul
QSX (X
A ZCy

H = max{0, WX + b} Yy =wx
A
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Computational Graph

“» Backprop can best be demonstrated using computational
graph.

“* We can use graphs to describe computations and operations

“* An operation is a function that takes one or more variables as
iInput and returns a single output.

matmul
QCSX

2=y H = max{0, WX + b} Y = wx
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Computational Graph

“» Backprop can best be demonstrated using computational
graph.

“* We can use graphs to describe computations and operations

“* An operation is a function that takes one or more variables as
iInput and returns a single output.

matmul
QCSX

2=y H = max{0, WX + b} Y = wx
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Computational Graph

“» Backprop can best be demonstrated using computational
graph.

“* We can use graphs to describe computations and operations

“* An operation is a function that takes one or more variables as
iInput and returns a single output.

2=y H = max{0, WX + b} Y = wx
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Computational Graph

“» Backprop can best be demonstrated using computational
graph.

“* We can use graphs to describe computations and operations

“* An operation is a function that takes one or more variables as
iInput and returns a single output.

Z =y H = max{0, WX + b}
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Computational Graph

“* Let’s define a feedforward network using

Yo = 0 (2¢)
Zp = Wy_10Yp—1

“* We can represent the computational graph of the network as

oL

8w2
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Computational Graph

“* Let’s define a feedforward network using

Yo = 0 (2¢)
Zp = Wy_10Yp—1

“* We can represent the computational graph of the network as

aﬁ L aﬁ 6}73 6Z3 ayQ 8Z2

aWQ B 8}’3 8Z3 8}’2 8zQ (9W2
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Convolutional Networks

* To analyze data that resides on a grid-like topology, we use a
group of networks named convolutional neural networks.

» Audio, Images
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Convolutional Networks

* To analyze data that resides on a grid-like topology, we use a
group of networks named convolutional neural networks.

» Audio, Images

oo v W'.' “l

% Convolutional neural networks, include layers that instead of
matrix multiplication, use convolution operations on input
data.

“* The filter used in convolution operations is small, which
reduces the number of unknown parameters in the model.
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Convolutional Networks

< Using finite length vectors, one can represent convolution on
1D space.

% Let w be a weight vector on domain {0, ...,L — 1} and x be a
signal on the domain {0, ..., N — 1}.

** Then, the convolution between x and w is defined as
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Convolutional Networks

< Using finite length vectors, one can represent convolution on
1D space.

% Let w be a weight vector on domain {0, ...,L — 1} and x be a
signal on the domain {0, ..., N — 1}.

** Then, the convolution between x and w is defined as
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Convolutional Networks

< Using finite length vectors, one can represent convolution on
1D space.

% Let w be a weight vector on domain {0, ...,L — 1} and x be a
signal on the domain {0, ..., N — 1}.

** Then, the convolution between x and w is defined as
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Convolutional Networks

< Using finite length vectors, one can represent convolution on
1D space.

% Let w be a weight vector on domain {0, ...,L — 1} and x be a
signal on the domain {0, ..., N — 1}.

** Then, the convolution between x and w is defined as
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Convolutional Networks

< Using finite length vectors, one can represent convolution on
1D space.

% Let w be a weight vector on domain {0, ...,L — 1} and x be a
signal on the domain {0, ..., N — 1}.

** Then, the convolution between x and w is defined as
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Convolutional Networks

< Using finite length vectors, one can represent convolution on

1D space.

% Let w be a weight vector on domain {0, ...,L — 1} and x be a

signal on the domain {0, ..., N — 1}.

** Then, the convolution between x and w is defined as
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Convolutional Networks

*» Similar to the 1D case, convolutions can be applied on 2D
signals.

“* Let W be a 2D filter with size MXN and X be a signal on the
2D domain.

* Then, the

M—-1N-1
W®X Z Z Wman+m ,J+n

m=0 n=0
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Convolutional Networks

*» Similar to the 1D case, convolutions can be applied on 2D
signals.

“* Let W be a 2D filter with size MXN and X be a signal on the
2D domain.

* Then, the

M—1N—1
W ® X];; = Z Z Wonn Xitm,j4n

m=0 n=0
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*» Similar to the 1D case, convolutions can be applied on 2D
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Output Unit

< An output activation function determines the form of the
model’s output.

< An output activation takes features extracted by the hidden
layers and transforms it to the desired output form.

“* The choice of the cost function is closely related to the choice
of the output layer.

“ In the regression problems, the output layer only includes a
linear transformation with no non-linearity.
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Output Unit

“* A 2 class classification problem requires predicting a binary
variable.

< In the maximum likelihood approach, we define a Bernoulli
distribution over variable y conditioned on x.

“* We only need to define p(y = 1]|x).
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Output Unit

“* A 2 class classification problem requires predicting a binary
variable.

< In the maximum likelihood approach, we define a Bernoulli
distribution over variable y conditioned on x.

“* We only need to define p(y = 1]|x).

“+ Consider using
max{0, min{1,w'h + b}}
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Output Unit

“* A 2 class classification problem requires predicting a binary
variable.

< In the maximum likelihood approach, we define a Bernoulli
distribution over variable y conditioned on x.

“* We only need to define p(y = 1]|x).

“+ Consider using
max{0, min{1,w'h + b}}

“* While between 0 and 1, it does have zero gradients outside
[0, 1].

“ This makes it impractical as use with gradient-based
optimization methods.
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Output Unit

“+ Another approach is to use sigmoid.

% A sigmoid function is defined as

1.0 A

0.8

1
1 i exp(—az) o Js o G fo 75 55 75w

sigmoid(x)

“* Given the extracted features from the layer before last

zr, = Wr_1LYr_4

as input, the sigmoid output unit is defined as

yr = sigmoid(Wr_1yr—1)
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Output Unit

< When computing the probability districbution on a discrete

variable y with n possible values, we can use softmax function.

“ A softmax function takes a vector of real values as input and
returns a vector of probability values,

exp(xy) exp(zco)

g o ooy

Zf:l exp(z.) Zf:l exp(w.)

softmax(x) :=

where softmax: R¢ — [0, 1]¢ with C total number of possible
outcomes.

% Given the extracted features from the layer before last
zr, = WL 1LY
as input, the sigmoid output unit is defined as
y; = softmax(Wr_1 1yr—1)
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Summary

< Shallow embedding

< Neural Networks

“ Training

< Optimization

% Stochastic Gradient Descent
“» Backprop

% Chain rule of calculus

<+ Computational graph

< Convolutional networks

< Output unit
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