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Problem Definition

)

L)

The goal of a generative model is to learn a probability distribution
from a set of training data ¥ = {GV}X |, with the help of latent
variable z.

Graphs are mathematical objects, consisting of a set of vertices and
a set of edges.

Our focus is on training the generative model in small data regime.

The objective is to reveal an underlying latent space Z that yields the
observations.

p(3) = / p(S, 2)dz = / p(S]2)p(2)d=

We introduce a model p(5|@), parameterized by 0, to approximate
ptarget(g)_
K
O\Le = arg maxlogp(¥ | ) = arg maleogp (9(";) | 9)
(7] o

k=1
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Problem Definition

“* However, this involves an intractable integration.

< A common remedy is to use a variational posterior ¢4(z | §) and
optimize the model by maximizing a lower-bound log p(§|8).

K
ZLorpo(0,6;9) =)  ZLerpo (9, ®; 9(i))
i=1

K K
=3 Eueoisin 10gp0(601=0)] =3 Dic [as(=19)po(=)

1=1 =1

+» Such a variational treatment lends itself to an autoencoder
qp(2 | 9) e (2) pe(G | 2)

CH; CH;

Molecular w 7

: Decoder
graphs é

K

\ Latent space /
Objective: arg max Zrrpo(0, p;9)

0,9
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Graph

“* A molecular graph represents atomic bonds with weighted edges and
represents atom information as signals residing on graph vertices

< We formulate the probabilistic mapping from the latent space to the

molecular graph domain by conditioning atom types on molecular
topology.

po(Glz) = pe(W, f|2)
= po(flz, W)ps(W|2)
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Encoding Network
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Hybrid Encoder

“* We parameterize the variational approximate posterior with a

Gaussian distribution, parameters of which are computed using an
encoding network.

% In the present work, the encoding network has a hybrid architecture
which extract features from the given input graphs using

» Graph scattering network

» Multilayer perceptron (MLP)
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Scattering Network

% Graph scattering transform is a type of deep neural networks with
predefined parameters to extract feature maps from input graphs.

% Scattering networks are constructed of a cascade of multiresolution
filters, combined with modulus non-linearity to generate features.

_K-» Non-linearity

A ~

n Un f = p(G(L)Up—1 f)
um—lf ’ G umf ; Convolution
N Smf ——\» Average Pooling

AG) =1[81f,...,.Su f]

% These features are invariant to permutation and stable with respect to
graph and signal manipulation.
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Linear Layers

% After extracting features in scattering layers, we use an additional
linear layer followed by a non-linearity to learn features.
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Linear Layers

% After extracting features in scattering layers, we use an additional
linear layer followed by a non-linearity to learn features.

% Furthermore, two linear layers are used to find the mean and
variance of the variational approximate posterior q,, of the the latent
space variable z.

__________________________ :: l((:) Ky (g(i) )

12 log ai(g(i))

Y.
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Decoding Network
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Bond Generator

% Weighted adjacency matrix decoder is constructed of an MLP that
projects samples from the latent space into score values for each
class of node types.

2 ~ p(2) - la®| (12 [|a®| [12[]a®)] [£9]a® ‘\‘, 4(5) i§s > pe(W|z) Clas.s_ |
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Atom Generator

% Atom type generator in the decoder is constructed of an MLP that
projects samples from the latent space and molecular topology into

discrete probabilities for classes of node types.

po(Wiz)- Hl U é*" > po(flz, W) g
z ~p(z 5 ’ Class probabilities
5 CONFOQ
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Decoding Network

% As the two decoding networks generate correlated information on
atoms and bonds of the molecular graph, we can have them share

the input layers

\‘\ I’I o ‘
K \ 8 \
z ~ p(z) {10 [ St po(flz, W)

< We train the model by minimizing the regularized expected negative

log-likelihood for each node and each edge.
N N Cw

N Cf
LO =3 "% —tlilogpy (fi =clz, W)+ > > > —tivilogpe (Wi, = c|2)
i=1 c=1 i=1 j=1 c=1
j>i
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Physical Constraints

Physics-Constrained Predictive Molecular Latent Space Discovery with Graph Scattering VAE

15



Regularized VAE

» In the regularization method, constraint terms are accompanied by
regularization parameters that are tuned until we observe the
desired output in terms of quality of the generated molecules.

20.¢. %) =~ (% > 1ogpe<9<i>z<ial>>) 200 = g (§) + S4(§) @ €

=1 =1
K - | el ~ N(e;0,1)
+ > i, [as(20199) p(2))

=1

K R
+zzur(
1=1 r=1

L N
Z(G(r) ((i—l)L-l—l),H))) '

=1

e~ =

z ~ p(z)

» Connectivity
» Valency

» 3—member cycles %/ @\
» Cycles with triple bonds
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Model Uncertainty
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Model Uncertainty

L)

L)

In this work, we focus on obtaining a predictive model accounting for
uncertainty.

Given a set of K i.i.d. observations ¥ = {3V, ..., §%¥)1 sampled from
Prarget(9), We are interested in finding a model py(9) that closely
mimics the target distribution

K
OnLE, OMLE = argergax gELBO(Ha o; g) = argergaXZgELBO(ea ®; 9(k))
) ’ k=1

Quantifying uncertainties in model parameters 8 enables us to
capture the epistemic uncertainty induced by the limited training data.

(5 19) = / p(S | 0)p(6 | 9)de

The full posterior over model parameters is often approximated using
a Gaussian distribution. However, this results in highly invalid
molecular graphs.
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Model Uncertainty

L)

We use Bayesian bootstrap method to approximate the Bayesian
predictive distribution.

Bootstrapping mimics sampling data from the population by random
sampling, with replacement, from sampled data.

Given a dataset ¢ = {3",...,3%)} we generate B samples of size
K by resampling from the original dataset.

A resampled dataset can be denoted by the associated resampling
weights ¢ = (¢, m).

p(w|9) = Dir(m;a’), witha' =[1,...,1] € RE

The MLE objective can be reformulated as maximizing the weighted
likelihood estimate

K
OmwLE(T) = arg max Z i log p(§™)(6)
k=1
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Model Uncertainty

% Since resampling weights 7 ~ p(w|¥) are positive and since
logp(5™10) > ZLurpo(8, d; 5™)

we can define a lower-bound on the weighted marginal log-likelihood

K

ONMWLE, PMwWLE = argergaxzﬂ'kZELBO< L G
R

< We can simulate approximately from the posterior distribution over @
by repeated sampling from the posterior distribution p(m|G) and
maximizing a weighted likelihood to calculate OyywiE-

pa(519) = [ (5| Bunwvis(m)) pi | @)

% Using Monte Carlo estimation, we approximation this predictive
distribution

= é Zp(gWMWLE(T"b))
b=1
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Results
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Molecule Sampling

% We train the model on QM9 dataset (K = 600), containing small
organic molecules with maximum 9 heavy atoms.

% Atoms include carbon, nitrogen, oxygen, and fluorine.

Algorithm 1 Predicting molecules using ancestral sampling.

Input Trained model pg(z)pe(G|2z) and L the number of samples to be drawn.
for(=1,...,L do
Generate a sample z(!) from pg(2).
Draw sample G from distribution pg (G|=).
end for
Return G5,

< Example of molecules sampled using the generative model.
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Quality Metrics

< The validity, uniqgueness, and novelty of the generated molecules are
basic quality metrics™ of molecular generative models:

Validity — 1°445)]

|5
T = Set of training molecules
Uniqueness = sl S = Set of sampled molecules (with repeat)
S| .
| S* = Set of sampled molecules
S| - TN 5|
Novelty =
|5

Quality metrics for graph scattering VAE

H, 3—member Triple bond
Lype Total Valency Connectivity cycle cycle Hung Hnut
Base 77.8% 15.9% 7.2% 3910 113 7T1.7T%  86.3%
Constrained  89.9% 5.6% 4.6% 1745 35 71.1% 95.8%

* Samanta, Bidisha, Abir De, Niloy Ganguly, and Manuel Gomez-Rodriguez. "Designing random graph models using variational autoencoders with applications to chemical
design." arXiv preprint arXiv:1802.05283 (2018).
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Quality Metrics

“* We have compared performance of our model with baseline
methods.

Method Hval Hunq anl
CVAE 10.3% 67.5% 90.0%
GVAE 60.2% 9.3%  80.9%
GraphVAE 55.7% 76.0% 61.6%
MolGAN 98.1% 10.4% 94.2%

K=600 =% GSVAE 7T7.8% T71.7%  86.3%
K =10000 = (GSVAE 87T1% 82.6% 92.7%

+ Rafael Go mez-Bombarelli, Jennifer N. Wei, David Duvenaud, Jose” Miguel Herna 'ndez-Lobato, Benjam'in Sa'nchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre,

Timothy D Hirzel, Ryan P Adams, and Ala'n Aspuru-Guzik. Automatic chemical design using a data-driven contin- uous representation of molecules. ACS central science,

4(2):268-276, 2018.
* Matt J. Kusner, Brooks Paige, and Jose” Miguel Herna 'ndez-Lobato. Grammar variational autoen- coder. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th
International Con- ference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1945-1954, International Convention Centre, Sydney, Australia,

06-11 Aug 2017. PMLR. URL http://proceedings.mir.press/v70/kusner17a.html.
* Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards generation of small graphs using variational autoencoders. arXiv preprint arXiv:1802.03480, 2018.

¢+ Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular graphs. arXiv preprint arXiv:1805.11973, 2018.
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VAE Latent Space

“* Properties of of interest include
* Fraction of carbons with SP3 hybridization
*  Number of rings
- Total Polar surface area
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Predictive Results

% The credible interval envelopes the reference solution (K = 10Kk).

» Polar Surface area
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Predictive Results

Training

Prediction

% LogP vs. MolWt chemical space

20 a0 60 80 100 120
Complete Dataset

~ 134k molecules

20 40 60 80 100 120 140 20 40 60 80 100 120 140

K =50 K =500
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Conditional Design

One of the popular applications of generative models, is to design
molecules with desired properties.

In a conditional generative task, we simultaneously train the model on
the molecules and their corresponding properties.

196 (2]9,y) = N(z; 14(5,y), S¢(5,9))
p9(9|z,y) ZpQ(W,f|Z,y) — pg(f|Z,W,y)p9(W|Z,y)

New molecules are generated by sampling from p(y) = N(y; u,,, Sy)
and p(z).

Given a target value y;, we sample the rest of the property values
from p(yl,lyéi’yz').

Physics-Constrained Predictive Molecular Latent Space Discovery with Graph Scattering VAE

28



Conditional Design

% Target 1: LogP, y; = —1 (blue), y; = 2 (red).
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Spectral Graph Filters

% In a weighted graph, in addition, a number (weight) is assigned to
each edge, which shows the relation of the nodes depending on the
given problem.

G=(V,E,W)

L=D-W
Laplacian

Weight matrix

Diagonal degree
matrix

Physics-Constrained Predictive Molecular Latent Space Discovery with Graph Scattering VAE
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Spectral Graph Filters

% Fourier transform on graphs is defined as as an expansion in the
Laplacian eigenvector basis

A

f(€) = (f,*™") fxe) = (f, xe)

Euclidean 5 Graph
Domain \Y% —k f <:> Lxe = A rap

Domain
F F
t < f T = N
Time F- 1 Frequency Vertex F- 1 Spectral
Domain Domain Domain Domain

% Hammond, David K., Pierre Vandergheynst, and Rémi Gribonval. "Wavelets on graphs via spectral graph theory." Applied and Computational Harmonic Analysis 30, no. 2 (2011): 129-150.
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Spectral Graph Filters

Frequency

% Spectrum of each graph consists of eigenvalues of its Laplacian.
L :XAX* Z; :A_l/QLA_1/2

< We form spectrum adapted kernels* to increases the discriminatory
power of the encoding network

% Filters are adapted based on cumulative spectral density function

1 K N—1 = (i)
Pi(s):=—=Y Y 1{4" <s}
A 4
NK i=1 (=0
. S ol |
200 & oal QP i /’
100 A 1 4 /
0.0 4 0.0 J

0- . T T T B — T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

~ ~

A A A

* Shuman, David I., Christoph Wiesmeyr, Nicki Holighaus, and Pierre Vandergheynst. "Spectrum-adapted tight graph wavelet and vertex-frequency frames." IEEE Transactions on Signal
Processing 63, no. 16 (2015): 4223-4235.
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Physical Constraint

L)

L)

L 4

L 4

L)

L)

The constrained optimization problem is
Iglgl — LELBO (9, o, g) VAE objective
subject to for almost all z ~ p(z)

C1(0,2z) <0,...,Cr(0,2z) <0 Constraints

This can be transformed to an unconstrained optimization problem using
Lagrange multipliers methods

:R 2
min — Zorso(0.6:9) + > ( [ e>2p<z>dz)
r=1

0,0

In the constraint term, marginalization is performed to generalize the
Lagrangian function for an infinite constraint set.

/(?+(z 0)? Z€+ W 0)2,  with 2V ~ p(2)

The regularization method differs in that rather than solving for
multipliers, regularization coefficients are changed to get desired result in
terms of validity of the molecular graphs.
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Physical Constraint

< Imposed constraints include:

>
>

\/
000

Connectivity
Valency

While the above constraints result in valid Lewis structures, not all
such molecules are feasible. One aspect that is overlooked in the
literature is that many of these valid combinations would be
energetically unstable.

Q- (D
3—-member cycles

Cycles with triple bonds

Physics-Constrained Predictive Molecular Latent Space Discovery with Graph Scattering VAE
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Physical Constraint

» Valence

)

+ This regularization term penalizes the network when the sum of the

orders of the bonds connected to an atom exceeds the valency of
that atom.

L)

Capacity of Probability of edge &;; Valence of Probability of node v;
bond type k ‘\ /’ having type k atom type k ‘\ / having type k
Ym,n — E yk:Wm,n,k: Um — 5 ukfm,k
k k
Expected capacity Expected valency
of edge &;; of node v;

L)

< Since only the positive values of the term ., Y,,,,, — U,,, are not
desirable, we define the regularization term as

%7(11)(9, z)y = max ( i Yinn — Upn, O)

n=1,n#*m
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Physical Constraint

L)

Connectivity

This regularization term penalizes the network if the output of the
network is not a single connected graph.

The n-th power of an adjacency matrix shows if there is a path of
length n between nodes v; and v;.

For a connected graph, the sum of all powers of matrixupto N — 1
should only have non-zero elements. v,

Aij=1-Wijo

A0 =71, A' = A, A" = 5(A"A), n=1,...,N —2

N-1
C=oc() A" , o v ,
n—0 3 2
This constraint encourages that the output is a single connected graph
54,(3,)7,/(9, Z) = GmQn - |1 — QCmm] +Cpn, where ¢; =1 — ffw
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Physical Constraint

L)

L)

)

L)

Let A represent the adjacency matrix of graph g.

We can find the number of the 3—member cycles of graph by
summing the diagonal elements

étr(A3) _ %Z(A?’)m,m

m

Using the generative model, instead of an adjacency matrix, we have
a probabilistic representation of the weight matrix pg (W®|z(1V),
where zW~ p(2)

Am,n =1 _pB(Wm,n — @‘Z)

Using the relation for the number of the 3—member cycles, we can
formulate the constraint term

(g, z) = %tr(]l?’)

Physics-Constrained Predictive Molecular Latent Space Discovery with Graph Scattering VAE
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Physical Constraint

This constraint is specified by two terms:

A function to inspect membership inacycle B., , = (I - —=A. ) ".

An indicator function for triple bonds J;;;(W).

Using these, we can formulate the constraint as

JIII(Wm,n)(Bsm,n)m,n S O) vm 7& n

We can define a probabilistic version of J;;;(W') as

Do = po(Wi.n = I11|2)

Using these matrices, we can reformulate and obtain the constraint

e<2>ezzzz Be,. mn
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Model Uncertainty

7/
0’0

)

L)

L)

L)

1t has prior distribution
p(w) = Dir(m; a), with a=10,...,0] € R®

Bootstrap methods work under the assumption that all distinct values
in ¥ have been observed.

p(w|¥) o< p(&|m)p(m)

1
T I
H ne+or— 1
X 7T

This leads to the posterior

p(w|9) = Dir(w; o), witha' =[1,...,1] e RE

Physics-Constrained Predictive Molecular Latent Space Discovery with Graph Scattering VAE

40



