

Stabilized Conservative Level Set Method with Adaptive Wavelet-based Mesh Refinement

Navid Shervani-Tabar, Oleg V. Vasilyev

Department of Mechanical Engineering University of Colorado at Boulder

69th Annual Meeting of the APS Division of Fluid Dynamics

•Level Set Method: Sethian's formulation*

$$\phi(\mathbf{x},t) = I(\mathbf{x},t) \min_{\mathbf{y}\in\Gamma(t)} \|\mathbf{x}-\mathbf{y}\|_2$$

$$I(\mathbf{x},t) = \begin{cases} 1, & \text{if } \mathbf{x} \in \Omega(t) \\ -1, & \text{if } \mathbf{x} \notin \Omega(t) \end{cases}$$

* J.A. Sethian, An analysis of flame propagation, Ph.D. thesis, University of California, Berkley (1982).

Level Set Method: Sethian's formulation*

$$\phi(\mathbf{x},t) = I(\mathbf{x},t) \min_{\mathbf{y}\in\Gamma(t)} \|\mathbf{x}-\mathbf{y}\|_2 \qquad I(\mathbf{x},t) = \begin{cases} 1, & \text{if } \mathbf{x}\in\Omega(t) \\ -1, & \text{if } \mathbf{x}\notin\Omega(t) \end{cases}$$

$$\Gamma(t) = \{ \mathbf{x} \in R^d : f(\mathbf{x}, t) = 0 \}$$

* J.A. Sethian, An analysis of flame propagation, Ph.D. thesis, University of California, Berkley (1982).

Level Set Method

Level Set Method: Sethian's formulation*

$$\phi(\mathbf{x}, t) = I(\mathbf{x}, t) \min_{\mathbf{y} \in \Gamma(t)} \|\mathbf{x} - \mathbf{y}\|_2 \qquad I(\mathbf{x}, t) = \begin{cases} 1, & \text{if } \mathbf{x} \in \Omega(t) \\ -1, & \text{if } \mathbf{x} \notin \Omega(t) \end{cases}$$
$$\Gamma(t) = \{\mathbf{x} \in R^d : f(\mathbf{x}, t) = 0\}$$

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = 0$$
$$|\nabla \phi| = 1 \qquad \mathbf{n} = \frac{\nabla \phi}{|\nabla \phi|}$$

* J.A. Sethian, An analysis of flame propagation, Ph.D. thesis, University of California, Berkley (1982).

Level Set Method

Level Set Method: Sethian's formulation*

$$\phi(\mathbf{x},t) = I(\mathbf{x},t) \min_{\mathbf{y}\in\Gamma(t)} \|\mathbf{x} - \mathbf{y}\|_{2} \qquad I(\mathbf{x},t) = \begin{cases} 1, & \text{if } \mathbf{x}\in\Omega(t) \\ -1, & \text{if } \mathbf{x}\notin\Omega(t) \end{cases}$$
$$\Gamma(t) = \{\mathbf{x}\in R^{d}: f(\mathbf{x},t) = 0\}$$
$$\frac{\partial\phi}{\partial t} + \mathbf{u}\cdot\nabla\phi = 0 \qquad |\nabla\phi| = 1 \qquad \mathbf{n} = \frac{\nabla\phi}{|\nabla\phi|}$$
$$\frac{\partial\tilde{\phi}}{\partial\tau} + \operatorname{sgn}(\phi)(|\nabla\tilde{\phi}| - 1) = 0 \qquad \tilde{\phi}(\mathbf{x},0) = \phi(\mathbf{x},t)$$

* J.A. Sethian, An analysis of flame propagation, Ph.D. thesis, University of California, Berkley (1982).

Level Set Method

Problems and Challenges

Mass Conservation
Accuracy

Problems and Challenges

Mass Conservation
Accuracy

Goals

Overcome LS volume conservation problem Improve accuracy

$$\psi(\mathbf{x},t) = \frac{1}{2} \left(\tanh\left(\frac{\phi(\mathbf{x},t)}{2\epsilon}\right) + 1 \right)$$

$$\Gamma(t) = \{ \mathbf{x} \in R^d : \psi(\mathbf{x}, t) = 0.5 \}$$

* E. Olsson, G. Kreiss, A conservative level set method for two phase flow, J. Comput. Phys. 210 (2005) 225-246.

$$\psi(\mathbf{x},t) = \frac{1}{2} \left(\tanh\left(\frac{\phi(\mathbf{x},t)}{2\epsilon}\right) + 1 \right) \qquad \Gamma(t) = \{\mathbf{x} \in R^d : \psi(\mathbf{x},t) = 0.5\}$$

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$

* E. Olsson, G. Kreiss, A conservative level set method for two phase flow, J. Comput. Phys. 210 (2005) 225-246.

Conservative Level Set Method

$$\psi(\mathbf{x},t) = \frac{1}{2} \left(\tanh\left(\frac{\phi(\mathbf{x},t)}{2\epsilon}\right) + 1 \right) \qquad \Gamma(t) = \{\mathbf{x} \in R^d : \psi(\mathbf{x},t) = 0.5\}$$
$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$

$$\frac{\partial \psi}{\partial \tau} + \nabla \mathbf{f}(\psi) = 0$$

$$\mathbf{f} = \psi(1 - \psi)\mathbf{n}$$

Conservative Level Set Method

* E. Olsson, G. Kreiss, A conservative level set method for two phase flow, J. Comput. Phys. 210 (2005) 225-246.

$$\psi(\mathbf{x},t) = \frac{1}{2} \left(\tanh\left(\frac{\phi(\mathbf{x},t)}{2\epsilon}\right) + 1 \right) \qquad \Gamma(t) = \{\mathbf{x} \in R^d : \psi(\mathbf{x},t) = 0.5\}$$
$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$
$$\mathbf{f} = \psi(1-\psi)\mathbf{n} \qquad \mathbf{n} = \frac{\nabla \psi}{|\nabla \psi|}$$

$$\frac{\partial \psi}{\partial \tau} = -\nabla \mathbf{f}(\psi) + \epsilon \Delta \psi$$

* E. Olsson, G. Kreiss, A conservative level set method for two phase flow, J. Comput. Phys. 210 (2005) 225-246.

Conservative Level Set Method

$$\psi(\mathbf{x},t) = \frac{1}{2} \left(\tanh\left(\frac{\phi(\mathbf{x},t)}{2\epsilon}\right) + 1 \right) \qquad \Gamma(t) = \{\mathbf{x} \in \mathbb{R}^d : \psi(\mathbf{x},t) = 0.5\}$$
$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$
$$\mathbf{f} = \psi(1-\psi)\mathbf{n} \qquad \mathbf{n} = \frac{\nabla \psi}{|\nabla \psi|}$$
$$\frac{\partial \psi}{\partial \tau} = -\nabla \mathbf{f}(\psi) + \epsilon \Delta \psi$$
$$\frac{\partial \psi}{\partial \tau} + \nabla \cdot (\psi(1-\psi)\mathbf{n}) = \nabla \cdot (\epsilon \nabla \psi)$$

* E. Olsson, G. Kreiss, A conservative level set method for two phase flow, J. Comput. Phys. 210 (2005) 225-246.

Conservative Level Set Method

Diffusion direction*

$$\frac{\partial \psi}{\partial \tau} = -\nabla \cdot (\psi (1 - \psi)\mathbf{n}) + \nabla \cdot (\epsilon (\nabla \psi \cdot \mathbf{n})\mathbf{n})$$

$$\mathbf{n} = \frac{\nabla \psi}{|\nabla \psi|}$$

* E. Olsson, G. Kreiss, S. Zahedi, A conservative level set method for two phase flow ii, J. Comput. Phys. 225 (2007) 785-807.

Diffusion direction*

$$\frac{\partial \psi}{\partial \tau} = -\nabla \cdot \left(\psi(1-\psi)\mathbf{n}\right) + \nabla \cdot \left(\epsilon(\nabla \psi \cdot \mathbf{n})\mathbf{n}\right) \qquad \mathbf{n} = \frac{\nabla}{|\nabla|}$$

Normal vector

$$\phi(\mathbf{x}) = \epsilon \ln(\frac{\psi(\mathbf{x})}{1 - \psi(\mathbf{x})})$$

$$\mathbf{n} = \frac{\nabla \phi}{|\nabla \phi|}$$

* E. Olsson, G. Kreiss, S. Zahedi, A conservative level set method for two phase flow ii, J. Comput. Phys. 225 (2007) 785-807.

The Improvements on Conservative Level Set

Diffusion direction*

$$\frac{\partial \psi}{\partial \tau} = -\nabla \cdot \left(\psi (1 - \psi) \mathbf{n} \right) + \nabla \cdot \left(\epsilon (\nabla \psi \cdot \mathbf{n}) \mathbf{n} \right) \qquad \mathbf{n} = \frac{\nabla \psi}{|\nabla \psi|}$$

Normal vector

$$\phi(\mathbf{x}) = \epsilon \ln(\frac{\psi(\mathbf{x})}{1 - \psi(\mathbf{x})}) \qquad \qquad \mathbf{n} = \frac{\nabla \phi}{|\nabla \phi|}$$

Using Fast Marching Method*

* E. Olsson, G. Kreiss, S. Zahedi, A conservative level set method for two phase flow ii, J. Comput. Phys. 225 (2007) 785–807. * O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J. Comput. Phys. 227 (2008) 8395–8416.

Improvements on Conservative Level Set

-Mapping ψ field on $\gamma\,{}^{\star}$

$$\gamma = \frac{\psi^{\alpha}}{\psi^{\alpha} + (1 - \psi)^{\alpha}}, \quad \text{for} \quad \alpha < 1$$

* R. K. Shukla, C. Pantano, J. B. Freund, An interface capturing method for the simulation of multi-phase compressible flows, J. Comput. Phys. 229 (2010) 74117439.

Improvements on Conservative Level Set

Coupled LS and CLS*

$$\phi(\mathbf{x}) = \epsilon \ln(\frac{\psi(\mathbf{x})}{1 - \psi(\mathbf{x})})$$

* R. K. Shukla, C. Pantano, J. B. Freund, An interface capturing method for the simulation of multi-phase compressible flows, J. Comput. Phys. 229 (2010) 74117439. * L. Zhao, X. Bai, T. Li, J. J. R. Williams, Improved conservative level set method, Int. J. Numer. Meth. Fluids 75 (2014) 575–590.

Improvements on Conservative Level Set

Challenges

Ill-defined normal vector
High computational expense
Potential discontinuity

$$\psi(\mathbf{x},t) = \frac{1}{2} \left(\tanh\left(\frac{\phi(\mathbf{x},t)}{2\epsilon}\right) + 1 \right)$$

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$

$$\psi(\mathbf{x},t) = \frac{1}{2} \left(\tanh\left(\frac{\phi(\mathbf{x},t)}{2\epsilon}\right) + 1 \right) \qquad \qquad \frac{\partial\psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$

$$\mathbf{m} = \frac{\epsilon \nabla \psi}{(\epsilon^2 |\nabla \psi|^2 + \alpha^2 \exp(-\beta \epsilon^2 |\nabla \psi|^2))^{0.5}}$$

$$\psi(\mathbf{x},t) = \frac{1}{2} \left(\tanh\left(\frac{\phi(\mathbf{x},t)}{2\epsilon}\right) + 1 \right) \qquad \qquad \frac{\partial\psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$

Stabilized Conservative Level Set Method

$$\frac{\partial \psi}{\partial \tau} = -\nabla \cdot (\psi(1-\psi)\mathbf{m}) + \nabla \cdot (\epsilon(\nabla \psi \cdot \mathbf{m})\mathbf{m}) + \nabla \cdot ((1-|\mathbf{m}^2|)\epsilon\nabla \psi)$$

$$\mathbf{m} = \frac{\epsilon \nabla \psi}{(\epsilon^2 |\nabla \psi|^2 + \alpha^2 \exp(-\beta \epsilon^2 |\nabla \psi|^2))^{0.5}}$$

Adaptive Mesh Refinement

Grid Adaptation:

Rotational Disk

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$

$$\mathbf{u}_x = -2\pi y,$$
$$\mathbf{u}_y = 2\pi x.$$

Rotational Disk

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$

$$\mathbf{u}_x = -2\pi y,$$
$$\mathbf{u}_y = 2\pi x.$$

Rotational Disk

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$

$$\mathbf{u}_x = -2\pi y,$$
$$\mathbf{u}_y = 2\pi x.$$

Rotational Disk

ϵ	Δx	Maximum deviation $\%$
$3.6 imes 10^{-2}$	2.4×10^{-2}	0.0202
$1.8 imes 10^{-2}$	$1.2 imes 10^{-2}$	0.0123
$0.9 imes 10^{-2}$	$0.6 imes 10^{-2}$	0.0033

Zalesak's Disk

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$

$$\mathbf{u}_x = -2\pi y,$$
$$\mathbf{u}_y = 2\pi x.$$

Zalesak's Disk

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$

$$\mathbf{u}_x = -2\pi y,$$
$$\mathbf{u}_y = 2\pi x.$$

Zalesak's Disk

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$

$$\mathbf{u}_x = -2\pi y,$$
$$\mathbf{u}_y = 2\pi x.$$

Vortex drop

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$

$$\mathbf{u}_x = 2\sin^2(\pi(x - x_{\min}))\sin(\pi y)\cos(\pi y)\cos(\frac{\pi t}{T}),$$
$$\mathbf{u}_y = -2\sin^2(\pi(y - y_{\min}))\sin(\pi x)\cos(\pi x)\cos(\frac{\pi t}{T}).$$

DEPARTMENT OF MECHANICAL ENGINEERING MULTI-SCALE MODELING & SIMULATION LABORATORY

Vortex drop

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$

$$\mathbf{u}_x = 2\sin^2(\pi(x - x_{\min}))\sin(\pi y)\cos(\pi y)\cos(\frac{\pi t}{T}),$$

$$\mathbf{u}_y = -2\sin^2(\pi(y - y_{\min}))\sin(\pi x)\cos(\pi x)\cos(\frac{\pi t}{T}).$$

- Based on non-unit normal vector.
- General, robust, and easy to implement.
- SCLS in combination with adaptive wavelet-based mesh refinement
- Accurately advect corners, sharp angles, and resolve thin filaments, while preserving excellent conservation properties of the conservative level set method.

•Applications to Multiphase flow:

-Shock-Bubble Interaction:

•Applications to Multiphase flow:

-Shock-Bubble Interaction:

•Applications to Multiphase flow:

-Shock-Bubble Interaction:

Future Work

-Bubble Dynamics near Membrane*:

* A. Hajizadeh Aghdam, S.W. Ohl, B.C. Khoo, M.T. Shervani-Tabar, M.R.H. Nobari, Effect of the viscosity on the behavior of a single bubble near a membrane, Int. J. Multiphas. Flow 47 (2012) 17–24.

Thank you for your attention.

